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New Developments in Geometric Graph TheoryJ. Pach.Abstract not Available.Characterizing Proximity TreesProsenjit Bose,� William Lenhart,y and Giuseppe LiottazMuch attention has been given over the past several years to developing algorithms forembedding abstract graphs in the plane such that the resulting drawing has certain geomet-ric properties. For example, those graphs which admit planar drawings have been completelycharacterized and e�cient algorithms for producing planar drawings of these graphs have beendesigned ([4], [9]). For an overview of graph drawing problems and algorithms, the reader isreferred to the excellent bibliography of Di Battista, Eades, Tamassia and Tollis [2]. More-over, many problems in pattern recognition and classi�cation, geographic variation analysis,geographic information systems, computational geometry, computational morphology, and com-puter vision use the underlying structure present in a set of data points revealed by means of aproximity graph. A proximity graph attempts to exhibit the relation between points in a pointset. Two points are joined by an edge if they are deemed close by some proximity measure.It is the measure that determines the type of graph that results. Many di�erent measures ofproximity have been de�ned. The relatively closest graph [6], the relative neighborhood graph[10], the gabriel graph [3], the modi�ed gabriel graph [1] and the delaunay triangulation are buta few of the graphs that arise through di�erent proximity measures.An extensive survey on the current research in proximity graphs can be found in Jaromczykand Toussaint [5]. As the survey suggests, interest in proximity graphs has been increasingrapidly in the last few years, but most of the interest has been algorithmic and little attentionhas been given to the combinatorial characteristics of these graphs. Monma and Suri [8] showthat any tree with maximum vertex degree �ve can be drawn as a minimum spanning tree.We study the problem of drawing trees as certain types of proximity graphs. We say that atree T can be drawn as a proximity graph when there exists a set of points in the plane suchthat the proximity graph of that set of points is isomorphic to T . Some su�cient conditionsfor such drawings to exist have been given by Cimikowski [1] for relatively closest graphs, byMatula and Sokal [7] for gabriel graphs and by Urquhart [11] for relative neighborhood graphs.However, there exists no complete combinatorial characterization for any of the these types ofproximity graphs. To this end, we give a complete characterization of the trees that can berealized as either the relative neighborhood graph, relatively closest graph, gabriel graph ormodi�ed gabriel graph of a set of points in the plane.�Research supported in part by NSERC and FCAR. School of Computer Science, McGill University, 3480University, Montr�eal, Qu�ebec, H3A 2A7. jit@mu�.cs.mcgill.cayDepartment of Computer Science, Williams College, Williams- town, MA 01267. This work has been donewhen this author was visiting the School of Computer Science of McGill University. lenhart@cs.williams.eduzDipartimento di Informatica e Sistemistica, Universit�a di Roma `La Sapienza', via Salaria 113, I-00198 Roma,Italia. This work has been done when this author was visiting the School of Computer Science of McGill University.liotta@infokit.ing.uniroma1.it 4



The su�ciency of the conditions of our theorems is established by providing drawing al-gorithms. Given an abstract tree that admits a particular type of drawing, say as a gabrielgraph, the drawing algorithm will compute a set of points such that the gabriel graph of theset of points is a tree that is isomorphic to the given tree. As for the necesssity, for each typeof proximity graph considered, we exhibit a set of trees, called forbidden trees, which we showcannot be drawn as that type of proximity graph. We then prove that no tree which can bedrawn as such a proximity graph can contain any of the forbidden trees.Theorem 1 A tree T can be drawn as the relatively closest graph or relative neighborhood graphif and only if the maximum vertex degree of T is at most 5. The drawing can be obtained inO(n) time, where n is the number of vertices in T , in the real RAM model.Theorem 2 A tree T can be drawn as the modi�ed gabriel graph if and only if the maximumvertex degree of T is at most three. This drawing can be obtained in O(n) time where n is thenumber of nodes in T , in the real RAM model.The characterization of trees which can be drawn as gabriel graphs depends on a set ofsubgraphs called wide trees. A rooted tree (T; u) consists of a tree T and a distinguished vertexu of T , called the root of T . Given a tree T , a vertex v of T and a neighboring vertex x of v,Tx(v) is de�ned to be the component of T � v containing x.De�nition 1: A rooted tree (T; u) is wide if1. deg(u) = 2 or2. deg(u) = 1, u has neighbor v of degree four and for each neighbor x of v, x 6= u, (Tx(v); x)is wide.De�nition 2: A tree T is forbidden if it contains any of the following1. A vertex of degree at least �ve2. Two adjacent vertices of degree four3. A vertex v of degree four such that for each neighbor x of v, the subtree (Tx(v); x) is wide.Theorem 3 A tree T can be drawn as the gabriel graph if and only if T is not forbidden. Thisdrawing can be obtained in O(n) time where n is the number of nodes in T , in the real RAMmodel.References[1] R. Cimikowski. Properties of some Euclidean proximity graphs. Pattern Recognition Letters,13, pp. 417-423, 1992.[2] G. Di Battista, P. Eades, R. Tamassia and I. G. Tollis. Algorithms for Automatic GraphDrawing: An Annotated Bibliography. Dept. of Computer Science, Brown Univ., TechnicalReport, 1993.[3] K. R. Gabriel and R. R. Sokal. A New Statistical Approach to Geographical Analysis. Sys-tematic Zoology, 18, 1969, pp. 54-64.[4] J. Hopcroft and R.E. Tarjan. E�cient Planarity Testing. J. ACM, 21, 4, pp. 549-568, 1974.5



[5] J.W. Jaromczyk and G.T. Toussaint. Relative Neighborhood Graphs and Their Relatives.Proceedings of the IEEE, 80, 9, pp. 1502-1517, 1992.[6] P. M. Lankford. Regionalization: Theory and Alternative Algorithms. Geographical Analysis,1, 1969, pp. 196-212.[7] D.W. Matula and R.R. Sokal. Properties of Gabriel Graphs Relevant to Geographic VariationResearch and the Clustering of Points in the Plane. Geographical Analysis, 12, 3, pp. 205-222, 1992.[8] C. Monma and S. Suri. Transitions in Geometric Minimum Spanning Trees. Bell Communi-cations Research Technical Report, 1991.[9] T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algorithms. Annals of DiscreteMathematics, North Holland, 1988.[10] G.T. Toussaint. The relative neighborhood graph of a �nite planar set. Pattern Recognition,12, pp. 261-268, 1980.[11] R.B. Urquhart. Some properties of the planar Euclidean relative neighbourhood graph.Pattern Recognition Letters, 1, 5, pp. 317-322, 1983.A Note on a Separator Algorithm for Tree Embeddings and itsApplication to Free Tree DrawingsFranz J. Brandenburg� and Peter EadesyDivide and Conquer is one of the major principles for algorithm design. It leads to fastalgorithms with good outputs, particularly if the division partitions a problem instance intotwo parts of almost equal size. For a problem instance of size n the partition tree of solvablesubproblems is then a complete binary tree of size 2n � 1. This means only a linear growth insize or an O(1) expansion. However, if there is no strict partition into equal sized subproblems,then the partition tree may be any binary tree. Binary trees are 1-separable, i.e., they admita partition into two subtrees in the range 1=3::2=3. In fact, for every k � 3 n, where n is thesize of the tree, there is a subtree of size m and k=3 � m � 2k=3. Moreover, there is a fastsearch algorithm for a proper subtree in the 1=3::2=3 range, searching in the bigger subtree untilits size falls under 2k=3. There may be a subtree t0 which approximates k=2 much better thanthe guaranteed range of k=3::2k=3, and this t0 may lie somewhere in a smaller branch. Thesewell-known strategies are used in our embedding algorithm.Algorithm DFS-EMBEDDFS-EMBED maps a binary tree t into a complete binary tree t0 such that each node and eachedge of t0 are visited twice according to a depth-�rst traversal. Moreover, the root of t is pinnedto the root of t0. t0 should be big enough. It is easily reduced to minimal size.Let S = v0; v1; : : : ; vp be the sequence of nodes of t0 visited in a dfs traversal by the recursion:root, left, right, root. Let P = x0; x1; : : : ; xq+1 be the path in t from the root to some designated�Universit�at Passau Lehrstuhl f�ur Informatik 94030 Passau, Germany. brandenb@informatik.uni-passau.deyUniversity of Newcastle Department of Computer Science Callahan, NSW 2308, Australia.eades@cs.newcastle.edu.au



node xq+1 selected by a good strategy. For i = 0; : : : ; q let yi be the other child of xi and let tidenote the subtree of t with root yi. Let tq+1 be the subtree with root xq+1. Rearrange P tothe sequence Q = x1; : : : ; xq; xq+1; x0 and consider the sequence of subtrees t1; : : : ; tq; tq+1; t0.Rename x0 into xq+2 and t0 into tq+2, such that Q = x1; : : : ; xq+2.For i = 1; : : : ; q + 2; if ti is nonempty then map its root yi to the next vertex vj(i) in thesequence S such that the vertex vj(i) was unmarked and - by recursion - ti �ts into the completesubtree of t0 with root vj(i). All vertices of this subtree will be doubly marked. Map the ancestorxi of yi to the ancestor w of vj(i), increase the mark of w and update all ancestors of w by asingle mark.The edge from xi to yi is directly mapped into the tree edge of t0. If ti is empty,then map xi to the next not yet doubly marked vertex in the sequence S and increase the markby one. It remains to route the edges on the path x0; x1; : : : ; xq+1 and from x0 to the secondchild xq+2. For i = 1; : : : ; q + 1, the edge from xi�1 to xi is mapped to the path according tothe dfs traversal of t0, with the edge from x0 to x1 along the �rst traversal and the others alongthe second. The edge from x0 to xq+2 is routed along the second traversal from xq+2 to x0.For a illustration of DFS-EMBED draw x1; : : : ; xq+1 as the rightmost path in the left subtreewith each ti below xi and let t0 be the right subtree of the root x0.Algorithm DFS-EMBED has the following properties:Lemma: DFS-EMBED runs in linear time.Lemma: Let t be a binary tree of size n. If DFS-EMBED chooses the path P = x0; x1; : : : ; xq+1such that(i) for i = 1; : : : ; q + 1 the subtree with root xi is bigger than the other subtree ti or(ii) 1=4 size(t) � size(t0) + size(tq+1) � 3=4 size(t) or(iii) (i) and (ii) holdthen DFS-EMBED(t) is a complete binary tree with height at most 2 � logn.Proof: (Sketch) DFS-EMBED maps a sequence of chained trees T = (x1; t1; : : : ; xq; tq),where xi is the ancestor of ti and xi+1 into a complete tree whose height exceeds the height ofan almost optimal binary search tree at most by one. The access distribution for the search treeis 1=W for each xi and 2logni+1 � 1=W for each ti of size ni with W = 2P2logni .We wood like to have an additive increase of the height only, but for DFS-EMBED the factorc = 2 is best possible.Lemma: There is an in�nite sequence of binary trees Ti such that DFS-EMBED (Ti)produces complete binary trees of height 2 � log(ni) with ni = size(Ti).Proof: (Sketch) Let the left subtree of Ti consist of a new vertex with two copies of Ti�1as its subtrees and let the right subtree of Ti be trivial, consisting e.g. of two vertices. Let T0be the complete tree with three vertices. Then Ti has 14 � 2i � 4 vertices. By induction, one ofthe two Ti�1 needs height at least 2 � log (size(Ti�1)), and DFS-EMBED sets the root of thisTi�1 at depth 2 .Corollary: Every binary tree t of size n can be embedded into a complete binary tree t0of height c � log n with c � 2, congestion 2 and dilation O(logn). Thus, the expansion is O(n),each edge of t0 is used at most twice and each edge of t is mapped into a path of length at mostc � logn.Remark: The linear expansion obtained from the factor c = 2 for the increased height isbetter than the one obtained by Hong et al [HMR] and Ruzzo and Snyder [RS]. They demandbounded dilation and then achieve c = 5 (Ruzzo, personal communication) which yields anexpansion of O(n4). 7



For free tree drawings or equivalently planar embeddings of binary trees one may use DFS-EMBED as an intermediate step, but this is a detour.Corollary: For every binary tree t of size n there is a free tree drawing d(t) derived fromtree drawings of complete binary trees, such that d(t) uses O(n2) area and has edges withO(logn) bends.This result is non-competitive. Valiant [Va] has shown that there are planar tree embeddingswith O(n) area and O(logn) bends and Crescenci et al. [CBP] have upwards drawings withO(n � log n) area and no bendsReferences[CBP] P. Crescenci, G. Di Battista, and A. Piperno "A note on optimal area algorithms forupward drawings of binary trees." Computational Geometry: Theory and Applications, 2,pp. 187-20 (1992)[BET] G. Di Battista, P. Eades and R. Tamassia "Algorithms for Drawing Graphs: An Anno-tated Bibliography" (1993)[HMR] J.W. Hong, K. Mehlhorn, A. L. Rosenberg "Cost Trade-o�s in Graph Embeddings,with Applications" Journal of the Assoc. for Comput. Machinery, Vol. 30, No. 4, pp. 709-728(1983)[Me] K. Mehlhorn "Data Structures and Algorithms" EATCS Monograph Computer Science(1984)[RS] W.L. Ruzzo and L. Snyder "Minimum Edge Length Planar Embeddings of Trees" In H.T.Kung, B. Sproull, and G. Steele, ed., VLSI Systems and Computations, pp.119-123 (1981)[Va] L.G. Valiant "Universality Considerations in VLSI Circuits" IEEE Transactions on Com-puters, C-30, pp. 135-140 (1981)Two Algorithms for Drawing Trees in Three DimensionsBrian Regan�This paper explores the presentation of tree structures in three dimensions. Some visualiza-tion systems have begun to use three dimensional tree drawings [8]; however, the wealth of funda-mental results on two dimensional tree layout (for example, [12, 6, 10, 10, 4, 11, 1, 14, 13, 10, 2, 5])is not matched in three dimensions. We are speci�cally interested in drawing free trees, that is,trees with no pre-speci�ed root.Two extensions to existing tree drawing algorithms were developed. The �rst takes the H-tree drawing algorithm for binary trees and extends it into three dimensions. This additionaldimension is achieved by alternating the direction of the next node between three rather thantwo axes. The H-tree algorithm produces a grid drawing. The second algorithm takes theprinciple of a radial drawing algorithm [3] and extends it into three dimensions. The successiveannuli of the radial algorithms are replaced by successive spherical shells sharing a common�Department of Management, University of Newcastle, New South Wales, AUSTRALIA.8



centre. Working from a root node at the centre, for each node an area for its descendants isprojected onto the next shell. This area is compared with the area formed by the intersectionof the tangent plane at the given node with the next outer shell. This second area is theequivalent of the annulus wedges formed in the two dimensional case. The smaller of these twoareas is subdivided according to the number of children of the original node. The subdivisionis accomplished by using a Lambert equal area projection of the sphere onto a plane [9], andallocating rectangles for each of the child nodes, from which spherical coordinates of the nodesare then determined. Improvement to the �nal layout will be gained from further re�nement tothe allocation algorithm for the projected surface area.One of the main aims of this study is to develop measures for the e�ectiveness of threedimensional tree drawings. In particular, the conventional measure of the area of a grid drawinghas an equivalent in terms of volume when working in three dimensions. However, this measureloses its relevance when the graph is drawn in a plane: the volume drops to zero. In addition,when considering the display of the graph on a screen, it becomes obvious that the crucialmeasure of the graph's image is the maximum size of its sides. With such a measure we candetermine whether the full graph will remain visible after the application of any rotation. Thuswe de�ne the size of a grid drawing of a graph to be the maximum length of a side of its smallestenclosing isothetic rectangular prism. We believe that this measure is especially relevant toorthogonal drawings, that is, drawings in which edges are parallel to one of the coordinate axes.The size of an H-tree presentation for any binary tree within 3 dimensions with n nodes is O(n).Theorem 1 The size of an H-Tree drawing in 3 dimensions of a complete binary tree with nnodes is O �n1=3�.The radial algorithm above does not give grid drawings and so the size measure loses itssigni�cance.The diameter of a graph drawing in three dimensions is the maximum distance betweenany two vertices. We propose two further measures for the quality of a graph drawing in threedimensions:� The ratio �=l, where l is the length of the shortest edge and � is the length of the longestedge. Long edges are di�cult to follow and we believe a large value for this ratio charac-terises a poor layout.� The ratio �=d, where d is the diameter of a drawing and � is the shortest distance betweena (adjacent or nonadjacent) pair of nodes. In this case, a large value is an indication of agood layout.Theorem 2 If l is the length of the shortest edge, and � is the length of the longest edge in adrawing of a tree with n nodes obtained from the radial algorithm, then �=l is O (pn).Theorem 3 If d is the diameter and � is the shortest distance between a pair of nodes in adrawing of a tree with n nodes obtained from the radial algorithm, then �=d is 
 � 1n�.Both our algorithms have been implemented in Windows and Unix environments. Samplesof binary trees have been processed against the H-Tree algorithm and a varied collection of treeswere processed with the radial algorithm. These samples give some support for the proposedmeasures; further, we believe that they form an interesting collection which may become usefulfor benchmarking future three dimensional tree drawing algorithms.9
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Area Requirement of Visibility Representations of Trees �Goos Kant, y Giuseppe Liotta, z Roberto Tamassia, x and Ioannis G. Tollis {The problem of drawing a graph in the plane has received increasing attention recently dueto the large number of applications [1]. Examples include VLSI layout, algorithm animation,visual languages and CASE tools. Vertices are usually represented by points and edges by simpleopen curves. Another interesting representation is to map vertices into horizontal segments andedges into vertical segments [7, 11]. Such a representation is called a visibility representation. Inthis paper we study the area requirement of various types of visibility representations of trees,and we present linear time algorithms for drawing such representations with optimal area.The concept of visibility between objects plays an important role in various problems ofcomputational geometry, where we say that two objects of a given set are visible if they can bejoined by a segment which does not intersect any other object. Two objects of the set are �-visibleif they can b e joined by a non-zero thickness band which doesn't intersect any other object. Theobjects are non overlapping. A visibility representation of a graph maps vertices into objectsand edges into segments between visible vertex-objects. Various visibility representations havebeen considered in the literature, and received increasing attention recently (see [9] for an up todate overview).Tamassia & Tollis [11] studied three types of visibility representations (weak, �, and strong)of graphs. A weak visibility representationmaps vertices to horizontal segments and edges to ver-tical segments having only points in common with the pair of horizontal segments correspondingto the vertices they connect. Algorithms for constructing weak visibility representations werepresented in [11] and independently in [7]. This type of representation has become a core itemin the �eld of graph drawing. Recently, Kant [8] showed that such a visibility representation canbe constructed in linear time on a grid of size at most (b32nc�3)�(n�1). A strong visibility rep-resentation maps vertices to horizont al segments such that two segments are visible if and onlyif the corresponding vertices are adjacent [11]. Tamassia & Tollis showed that every triangularplanar graph and 4-connected planar graph has a strong visibility representation [11]. However,deciding whether a general planar graph has a strong visibility representation is NP-complete[1]. Several years after the publication of the �rst papers, researchers started the study of the2-dimensional variant of this problem: vertices are represented by isothetic rectangles, and edgesare represented by horizontal or vertical segments, having only points in common with the pairof rectangles corresponding to the vertices they connect. We only consider rectangles withnon-zero area and sides parallel to the x-axis and y-axis. This representation is called 2-weakvisibility representation. In [12] Wismath proves that every planar graph admits a 2-� visibilityrepresentation, that is a 2-weak visibility representation representation with the ad ditionalproperty that two rectangles are �-visible if and only if the corresponding vertices in the graph�Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. ArmyResearch O�ce under grant DAAL03-91-G-0035, by the O�ce of Naval Research and the Advanced ResearchProjects Agency under contract N00014-91-J-4052, ARPA order 8225, and by ESPRIT Basic Research ActionNo. 7141 (Project ALCOM II). This work was performed in part at the Bellairs research Institute of McGillUniversity.yDepartment of Computer Science, Utrecht.University P.O. box 80.089, 3508 TB Utrecht, NL. goos@ cs.ruu.nl.zDipartimento di Informatica e Sistemistica Universita' di Roma La Sapienza, 00185 Roma, Italy. This workhas been done while this author was visiting the School of Computer Science of McGill University, Montreal.liotta@infokit.ing.uniroma1.it.xDepartment of Computer Science, Brown University, Providence, RI 02912-1910. rt@cs.brown.edu.{Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083-0688.tollis@utdallas.edu. 11



are adjacent. A 2-strong visibility representation maps each vertex to a rectangle such that tworectangles are visible if and only if the corresponding vertices in the graph are adjacent.Recently, the area of the representation has gained a lot of attention, especially in the �eldof graph drawing [11, 4, 5, 2]. Eades et al. in [6, 7] study di�erent possible representationsof trees under the constraint of minimizing the size of the drawing. For a complete survey ongraph drawing see [1]. The area of a drawing is the area of the smallest rectangle with sidesparallel to the axes covering the drawing. The width and the height of the drawing are the widthand the height of the covering rectangle. We assume the existence of a resolution rule, whichimplies that the width and the height of a drawing cannot be arbitrarily scaled down. A typicalresolution rule for 1- and 2- visibility representations is requiring for the endpoints of the vertexsegments or vertex rectangles to be placed at the points of an integer grid. The existence of sucha resolution rule naturally raises the problem of computing 1- and 2-visibility representations ofa graph with minimum area.We investigate the strong visibility problem for trees. The contribution is twofold. First weshow lower bounds on the area occupied by any 1- and 2-strong visibility representation of trees.Next we present linear time drawing algorithms that obtain such representations achieving thesebounds. Since in this paper we only study 1- and 2-strong visibility representations, we call them1- and 2-visibility representations, for brevity.In the rest of this abstract we give a list of the main results.Theorem 1 Let T be a rooted tree with n vertices, l leaves and height h. The area required bya 1-visibility representation �(T ) of T is �(h � l). Also �(T ) can be computed in O(n) time.Let T be a free (i.e. unrooted) tree. Let v be a vertex of T and let T 1v ; : : : ; T kv be the subtreesobtained by removing v and the edges incident on v. We root each subtree T iv at the uniquevertex of T iv, adjacent to v in T . We assume that always h(T 1v ) � h(T 2v ) � : : : � h(T kv ) in thispaper. T kv is called the k-th highest subtree of v.We denote with Tv the tree obtained by deleting from T the �rst and the second subtreeof v and the incident edge of v to T 1v and to T 2v . Root Tv at v. We call the third vertex of Tthe vertex v� such that the height of the third highest subtree of v� is maximum, i.e., for whichh(Tv�) is maximum. Let k� be the corresponding height, i.e., k� = h(Tv�).Theorem 2 Let T be a free tree with n vertices and l leaves; let k� be the height of the thirdsubtree of the third vertex of T . The area required by a 1-visibility representation �(T ) of T is�(k� � l + n). Also �(T ) can be computed in O(n) time.Theorem 3 Let T be a free tree with n vertices, l leaves and height h. The area required by a2-visibility representation �(T ) of T is �(l � n). Also �(T ) can be computed in O(n) time.AcknowledgmentsThis research is a consequence of the authors' participation to the Workshop on Visibility Repre-sentations of Graphs organized by Sue Whitesides and Joan Hutchinson at the Bellairs ResearchInstitute of McGill University, Feb. 12-19, 1993. We thank the other participants of the Work-shop for useful discussions.References[1] T. Andreae, Some Results on Visibility Graphs, 1989, preprint.12



[2] P. Crescenzi, G. Di Battista, and A. Piperno, A Note on Optimal Area Algorithms forUpward Drawings of Binary Trees, to appear in Comp. Geometry: Theory and Applications.[3] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis Algorithms for Automatic GraphDrawing: An Annotated Bibliography, Dept. of Comp. Science, Brown Univ., Technica lReport, 1993 . Available via anonymous ftp from wilma.cs.brown.edu (128.148.33.66), �les/pub/gdbiblio.tex.Z and /pub/gdbiblio.ps.Z.[4] G. Di Battista, R. Tamassia and I.G. Tollis, Constrained Visibility Representations ofGraphs, Inform. Process. Letters 41 (1992), pp. 1{7.[5] G. Di Battista, R. Tamassia and I.G. Tollis, Area Requirement and Symmetry Display ofPlanar Upward Drawings, Discr. and Comp. Geometry (1992), pp. 381{400.[6] P. Eades, T. Lin, and X. Lin, Two tree Drawing Conventions, Key Centre for SoftwareTechnolog y, Dept. of Comp. Science, The Univ. of Queensland, Techinal Report No. 174,1990. (to appear in Computatio nal Geometry and Applications).[7] P. Eades, T. Lin, and X. Lin, Minimum Size h-v Drawings, Advanced Visual interfaces (Proceedings of AVI 92), World Scienti�c Series in computer science Volume 36, 1992, pp. 386-394.[8] G. Kant, A More Compact Visibility Representation, in: J. van Leeuwen (Ed.), Proc. 19thIntern. Workshop on Graph-Theoretic Concepts in Comp. Science (WG'93), Lecture Notesin Comp. Science, Springer-Verlag, 1993, to appear.[9] J. O'Rourke, Computational geometry column 18, Int. Journal of Comp. Geometry & Appl.3 (1993), pp. 107{113.[10] P. Rosenstiehl, and R. E. Tarjan, Rectilinear Planar Layouts andBipolar Orientations ofPlanar Graphs, Discr. and Comp. Geometry 1 (1986), pp. 343{353.[11] R. Tamassia, and I. G. Tollis, A Uni�ed Approach to Visibility Representations of PlanarGraphs, Discr. and Comp. Geometry 1 (1986), pp. 321{341.[12] S.K. Wismath, Bar-Representable Visibility Graphs and Related Flow Problems, Dept. ofComp. Science, Univ. of British Columbia, Technical Report, 1989.
13



E�cient Computation of Planar Straight-Line UpwardDrawings �Ashim Gargy and Roberto TamassiayAn upward drawing of a digraph is such that the edges are curves monotonically increasing inthe y-direction. Clearly, a digraph admits an upward drawing if and only if it is acyclic. Upwarddrawings e�ectively visualize hierarchical relationships, such as partial orders, PERT-diagrams,and is-a diagrams.In this paper we investigate planar straight-line upward drawings of digraphs. We shalldenote with n the number of vertices of the digraph currently being considered. Previous resultsare [1, 2]:� A digraph admits a planar straight-line upward drawing if and only if it is a subgraph ofa planar st-digraph, i.e., a planar acyclic digraph with one source and one sink, joined byan edge.� A planar straight-line upward drawing of a planar st-digraph can be constructed in O(n logn)time. This algorithm assigns real coordinates to the vertices, and no bound on the area ofthe drawing is provided.� There exists a family of planar acyclic digraphs that require exponential area in any planarstraight-line upward drawing with vertices placed at grid points. Namely, for any positiveinteger n there exists an n-vertex planar acyclic digraph Gn such that any planar straight-line upward drawing of Gn with integer vertex coordinates has area 
(p2n).Our new results are summarized as follows:� We give an optimal O(n)-time algorithm for constructing a planar straight-line upwarddrawing of a planar st-digraph.� We present the �rst NC parallel algorithm for constructing planar straight-line upwarddrawings. Our algorithm runs in time O(log2 n) on a CRCW PRAM with n processors.� We show that the exponential area lower bound for planar st-digraphs is tight and can bee�ciently attained. Namely, we argue that the drawings produced by the aforementionedsequential and parallel algorithms have area O(cn), for some constant c.� Both the parallel and sequential algorithms use integer arithmetic where the size of theoperands is O(A2=3), where A is the area of the drawing produced by the algorithm.� We give a partial characterization of the area requirement of planar straight-line upwarddrawings of maximal planar st-digraphs, based on the \nesting" of separating triangles.Our algorithms are based on a technique that �rst contracts a large (
(n)-size) subset ofedges, then recursively computes a drawing of the resulting subgraph, and �nally restores thecontracted edges to yield a drawing of the original digraph.�Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. ArmyResearch O�ce under grant DAAL03-91-G-0035, and by the O�ce of Naval Research and the Defense AdvancedResearch Projects Agency under contract N00014-91-J-4052, ARPA order 8225.yDepartment of Computer Science, Brown University, Providence, RI 02912{1910. fag,rtg@cs.brown.edu14



References[1] G. Di Battista and R. Tamassia, \Algorithms for Planar Representation of Acyclic Digraphs",Theoretical Computer Science, vol. 61, pp. 175-198, 1988.[2] G. Di Battista, R. Tamassia, and I.G. Tollis, \Area Requirement and Symmetry Display ofPlanar Upward Drawings", Discrete & Computational Geometry, vol. 7, no. 4, pp. 381-401,1992. An Approach for Bend-Minimal Upward DrawingUli F�o�meier � and Michael Kaufmann �Besides minimizing the area of the embedding and edge lengths the minimization of thenumber of bends is the measure of the quality of a planar embedding. The only provably optimalalgorithm for this criterion of Tamassia [6] reduces the problem to a min-cost-
ow problem andhas therefore a quite high runtime of O(n2 � logn). Several heuristics ([8, 11]) are must fasterbut do not guarantee optimality.Our approach has the goal to achieve optimality in a simple way for a certain class ofembeddings, namely upward-drawings. We show how to get optimal bounds on the number ofbends in linear time. Upward drawings are a popular way to display acyclic digraphs such thatall edges 
ow in the same direction (from bottom to top). Most algorithms for upward drawingsfor planar graphs concern the minimization of the area, display of symmetries and isomorphisms.The problem of rectilinear upward drawing does not arise in the literature so often (a variationappears in [1]).We de�ne a rectilinear drawing to be upward if all segments of the edges are either horizontallyor upward, and for each node v with incoming/outgoing edges one incoming/outgoing edge isincident to v by a vertical segment. As in [6], we �rst determine a topological embedding of thegraph, namely the direction each edge starts in and the sequence of bends on it. After this, alinear standard compaction algorithm computes the �nal embedding of the graph in the grid.Here we describe only the �rst step. We assume that the graph is a subgraph of a 4-planars-t-graph. Rectilinear upward drawings exists only for those graphs.Basic IdeasBefore describing the algorithm we start with some observations. Let G = (V;E) be anacyclic planar s-t graph with maximum degree 4 embedded in the plane. Every edge has twodirections: a start direction (the way how the edge leaves a node) and an end direction (theway how the edge joins a node). Valid directions are only left, upward and right. If the startdirection and the �nish direction of an edge are di�erent, the edge gets one or two bends.Our algorithm assigns appropriate directions for the start and end segments to all edges andputs the fragments together by producing bends if necessary.At any node there are at most two di�erent ways of assigning the edges (i.e. the connectionsto the neighbours) to the pins (left, upward, right and downward). If a node has e.g. two exits,we can assign them either to the upper and right pin or to the left and upper pin. If we makethe wrong decision there may be di�culties to connect the remaining edges (in the example,�Wilhelm-Schickard-Institut f�ur Informatik, Universit�at T�ubingen, Sand 13, 72076 T�ubingen, Germany.mk@informatik.uni-tuebingen.de 15



the entries). Therefore it is important to determine an order how to do the assignment. Clearlythere is no problem with nodes with one or three entries (or exits respectively): In the formercase it has to be the lower (upper) pin, in the latter case the left, lower and right (right, upperand left) pin in this order. Nodes of degree 3 or with two entries and two exits are called critical.For critical nodes we always have two choices.It is well known [4] that the incoming edges of each node v of a planar s-t-graph appearconsecutively around v, and so do the outgoing. This makes sense to say that an exit (entry) isat the left or at the right of another.Lemma 1. Let v be a node of degree 3 with two exit edges ei and ej , s.t. ei is left of ej . Anarbitrary assignment of ei to a pin increases the number of bends on ej by at most one. Thereare no global e�ects on the embedding, i.e. the neighbours of v 'do not realize the di�erence'.An analogous fact holds for critical nodes with two entries.Proof: Let c be the number of bends in the case that the left and upper pins are the exitpins of v. We can simulate the other con�guration (upper/right pins are exits) by turning theedge out of the upper pin to the left and the edge out of the right pin upward using two newbends. }Lemma 2. Let v be a critical node of degree 4. For every pair (ei; ej) of adjacent edges theirbendcosts increase by at most two if ei and ej are assigned arbitrarily to pins. The situation ofthe neighbours is not changed thereby (no global e�ects).As already seen computing start and end directions of an edge connecting two non-criticalnodes is easy. For an edge between a critical node v of degree 3 and a non-critical node Lemma1 ensures that it is always good to choose the cheaper way to connect the non-critical node,because the other entry (exit) pin of v requires at most one bend more than its neighbour pin toconnect any edge. Thus the chosen solution is not worse than the alternative. After this actionv becomes non-critical (its other entry (exit) pin has no more choice).The case of an edge from a non-critical node u to a critical node v of degree 4 is morecomplicated since three pins are in
uenced by �xing one; thus it is not good to apply the greedystrategy here.De�nition. A critical node v is called maiden if less than two of its neighbours have already�xed their connection to v. If the two alternatives of the connections to the �xed neighbourshave di�erent costs, v is called decided and tie otherwise.Note that a tie node always has degree 4. Lemma 2 tells us that if a node is decided, thedi�erence between the two alternatives is exactly 2 (two bends). With the argument above wecan choose the cheaper one in such cases, because the two other pins require at most two bendsmore than in their optimal layout.If there are no more decided nodes, i.e. all nodes still un�xed are tie, we compute a componentM � V of nodes such that every v 2 M is tie, M is connected in the underlying undirectedgraph and jM j is maximal. We take a node on the border of M (i.e. connected with two nodes62 M ) and assign its pins in an arbitrary way. Thereby its neighbours in M become decidedand so on. Step by step the whole component can be �xed. Note that the state of the criticalnodes may change after each step.The algorithm follows the description of the di�erent cases above. The nodes are partitionedinto di�erent classes (critical, non-critical,...) and the edge directions are assigned by localinspections. The missing components at the end are handled as described above.16



The correctness of the algorithm follows from the fact that it only determines a connection,if either the alternative cannot be better (non-critical nodes, decided nodes) or the alternativeshave been proved to be equal (components of tie nodes).The AlgorithmAt each step of the algorithm we have to determine the new state of at most four critical nodes.This can be done in constant time. The �rst two phases (non-critical nodes and decided nodes)are trivially linear. The only di�culty is to compute the components M in phase 3. But thisis easy, too: starting with an actual subset M 0 of V (at the beginning one tie node) we have totest the neighbours of nodes in M 0 if they are tie. Therefore we make at most 4jM j tests. Allcomponents are disjoint (follows from the de�nition of a component), therefore we have to makeO(n) tests.Theorem. The algorithm works in linear time.RemarksThe class of rectilinear upward drawings considered here is a proper subclass of the classcommonly known as rectilinear upward drawings (each edge is represented by a monotonicallyincreasing curve). If we consider the di�erences between the two models, we �nd examples withmuch more bends for our model. But it seems that these unnecessary bends can be removed veryeasily. With small modi�cations our algorithm is a good heuristic for the problem of generalrectilinear upward drawing.References[1] Di Battista, G., R. Tamassia and I.G. Tollis, Area requirement and symmetry display indrawing graphs, Discrete and Comp. Geometry 7 (1992), pp. 381{401.[2] Storer, J.A., On minimal node-cost planar embeddings, Networks 14 (1984), pp. 181{212.[3] Tamassia, R., On embedding a graph in the grid with the minimum number of bends, SIAMJ. Comput. 16 (1987), pp. 421-444.[4] Tamassia, R., and I.G. Tollis, A Uni�ed Approach to Visibility Representations of PlanarGraphs, Discrete and Comp. Geometry 1 (1986), pp. 321{341.[5] Tamassia, R., and I.G. Tollis, E�cient embedding of planar graphs in linear time, in: Proc.IEEE Int. Symp. on Circuits and Systems, Philadelphia, pp. 495{498, 1987.Representations of Planar GraphsC. ThomassenAbstract not Available.17



On Lattice Structures Induced by OrientationsPatrice Ossona de Mendez �First we remark that an acyclic orientation of a rooted graph de�nes a distributive latticeon its algebraic cocircuits (i.e. oriented cuts). Let v0 be the root of an acyclic oriented graph G,recall that an algebraic cocircuit of Gmay be expressed as a sum of vertex cocircuits with integercoe�cients. If we constrain the v0 cocyle's coe�cient to be null, the decomposition is uniqueand de�nes an injection from the cocircuits into a ZZ -free module. The total order of ZZ de�nesa partial order on the algebraic cocircuits of G. This partial order is a distributive lattice : thein�mum and supremum operators are expressed in terms of min and max on the coe�cients.The Hasse diagram of a lattice is the oriented graph whose vertices are the elements of the latticeand whose edges correspond to the immediate-sucessor relation. In the Hasse diagram of thecocircuits' lattice, two cocircuits are adjacent if and only if their distance is 1 in the ZZ -module.By duality, the algebraic circuits of an oriented face-rooted planar graph have also a distributivelattice structure. This circuits' lattice seems to be more powerfull.We shall �rst give an example where this circuits' lattice structure, de�ned on the e-bipolarorientations, leads to relevant geometric interpretations. Thatfor, we express a bijection betweene-bipolar orientations and algebraic circuits of a planar graph [11] [10].Given a biconnected graph G and an oriented edge e = (s; t) of G, an e-bipolar orientationof G is an acyclic orientation of the edges of G having s as a unique source and t as a uniquesink.Bipolar orientations are closely related to connexity and planarity [5] [3] [10]. They havebeen extensively used to perform graph drawing of planar graphs [8] [14] [4] [6] [8], upwarddrawings [7] and testing graph planarity [9].In the planar case, the angle graphe A(G) of G (also called radial graph) is de�ned as thevertex/face adjacency graph related to an embedding of G. The e-bipolar orientations of Gare in bijection with the edge 2-colorations of A(G) satisfying local conditions. Given one such2-coloration, the e-bipolar orientations are in bijection with the alternating cycles [12] [1] [5].An edge 2-coloration of a bipartite graph naturally de�nes an orientation of the edges map-ping alternating cycles into oriented circuits. The e-bipolar orientations of G are thus in bijectionwith the circuits of an induced orientation of A(G). If the graph is 3-connected, each edge ofA(G) (except those incident to the vertices corresponding to vertices and faces of G incident toe) belongs to a circuit [5]. Hence, the graph A(G) is totaly cyclic and, by duality, we may applythe lattice construction de�ned previously : the set of the e-bipolar orientations of a 3-connectedplane graph G is a distributive lattice and its Hasse diagram is the adjacency graph of the e-bipolar orientations of G (two orientations being adjacent if they di�er by the orientation of aunique edge). The connexity of the lattice implies the connexity of the adjacency graph of thee-bipolar orientations of a 3-connected. This last result holds also for non planar 3-connectedgraphs, as proved in [5] [10]. The minimum and maximum e-bipolar orientations of the latticehave a very simple geometric interpretation exhibited by the left and the right path-packingalgorithms [4].The e-bipolar orientations of a 3-connected graph G are in bijection with its st-upwarddrawings. The Hasse diagram describes allowable local deformations of an upward drawing.The connexity implies that any two upward drawings can be derived from one another throughsuccessive local deformations.�Ecole des Hautes Etudes en Sciences Sociales, 54 Boulevard Raspail { PARIS18



As an other application, we mention the lattice structure of the 3-trees decompositionsintroduced by W. Schnyder and C. Thomassen. In this later case, the successor relation is relatedto a circular permutation of the tree assignments among a triangle. This local transformationgenerates the lattice and hence all the 3-trees decompositions [2].References[1] M. Bousset. Orientation d'un sch�ema par passage d'un 
ot dans les angles. PhD thesis,Ecole des Hautes Etudes en Sciences Sociales, Paris, 1993.[2] H. de Fraysseix and P. O. de Mendez. On tree decompositions and angle marking of planargraphs. in preparation.[3] H. de Fraysseix and P. O. de Mendez. Planarity and edge poset dimension. submitted tothe European Journal of Combinatorics.[4] H. de Fraysseix, P. O. de Mendez, and J. Pach. Representation of planar graphs by segments.to appear in Intuitive Geometry, 1993.[5] H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. Bipolar orientations revisited. InFifth Franco-Japanese Days on Combinatorics and Optimization, 1992.[6] H. de Fraysseix, P. O. de Mendez, and P. Rosenstiehl. On triangle contact graphs. InCambridge combinatorial Conference in honor of Paul Erd�os, 1993.[7] G. Di Battista and R. Tamassia. Algorithms for plane representations of acyclic digraphs.Theoret. Comput. Science, 61:436{441, 1988.[8] G. Kant. Hexagonal grid drawings. Internal report of the Utrecht University, 1992.[9] A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of graphs. InGordon and Breach, editors, Theory of Graphs, pages 215{232, 1967.[10] P. O. de Mendez. Orientations bipolaires. PhD thesis, Ecole des Hautes Etudes en SciencesSociales, Paris, 1993. To be defended.[11] P. O. de Mendez. The plane bipolar orientations' lattice. In Sixth Franco-Japanese Dayson Combinatorics and Optimization, 1993.[12] P. Rosenstiehl. Embedding in the plane with orientation constraints : the angle graph.Ann. N.Y. Acad. Sci., pages 340{346, 1983.[13] P. Rosentiehl and R.E. Tarjan. Rectilinear planar layout and bipolar orientation of planargraphs. Discrete and Computational Geometry, 1:343{353, 1986.[14] R. Tamassia and I.G. Tollis. A uni�ed approach to visibility representations of planargraphs. Discrete Comput. Geom., 1:321{341, 1986.
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Complexity of Intersection Classes of GraphsJan Kratochv��l � and Ji�r�� Matou�sek �Many of the well known and studied classes of intersection graphs of geometrical objects inthe plane possess nice properties, with respect to algorithmic complexity. Often such problemslike stable set, clique or chromatic number are polynomially solvable, and many of such classesare recognizable in polynomial time (cf. interval graphs, circular arc graphs, circle graphs,function graphs, etc.). On the other hand, already slightly more general classes are NP-hardto recognize (e.g., intersection graphs of straight segments). Here we give a brief survey of thecomplexity of the recognition problem.If C is a class of sets (geometric objects in our case), then the class of intersection graphs ofC, denoted by IG(C), will be the class of all simple undirected graphs, isomorphic to graphs ofthe form G = (V;E), where V � C and e = uv 2 E i� u\ v 6= ;:We call this V a representationof (the isomorphism class of) G.We set (all the objects in consideration are planar)STRING = IG(fall simple curvesg)CONV = IG(fall convex setsg)SEG = IG(fall straight line segmentsg)k �DIR(d1; : : : ; dk) = IG(fall segments with slopes among d1; : : : ; dkg);d1; : : : ; dk real numbersk �DIR = [fk �DIR(d1; : : : ; dk); d1; : : : ; dk real numbersg:(Note that in our setting, interval graphs = IG(fsegments of a lineg), circular arc graphs =IG(fsegments of a circleg), circle graphs = IG(fchords of a circleg) and all of these classes canbe recognized in polynomial time).Theorem 1 i) Recognition of STRING graphs is NP-hard [2], no upper bound is known. ii)Recognition of CONV and SEG graphs is NP-hard [1, 2] and both these problems are in PSPACE[5].iii) For every �xed k � 2, recognition of k-DIR graphs is NP-complete [4, 5].iv) Recognition of k�DIR(d1; : : : ; dk) graphs is NP-complete. [5] (note that here k and d1; : : : ; dkare part of the input).v) Intersection graphs of isothetic rectangles (i.e., graphs of boxicity 2) are NP-complete torecognize [4].vi) Recognition of SEG graphs is polynomially equivalent to deciding solvability of a system ofstrict polynomial inequalities in real numbers [5].Unlike most decesion problems of similar nature, the recognition problems treated in The-orem 1 are not known to be in NP (cv. parts i),ii)), or their membership in NP is nontrivial(parts iii),iv)). The following results show why the usual `guess and check' scheme of provingNP{membership fails for STRING, SEG and k-DIR graphs.�Prague, Czech Republic. 20



Theorem 2 i) For every n, there is a graph Gn 2 STRING on O(n4) vertices, such that ineach of its STRING-representations there are two curves which share at least 2n crossing points[3]. ii) For every n, there is a graph Gn 2 SEG on O(n2) vertices, such that in each of itsSEG-representations whose segments have integer endpoints, there is segment with an endpointcoordinate of size at least 22n [5].iii) For every n, there is a graph Gn 2 3 � DIR on O(n2) vertices, such that in each ofits 3-DIR-representations whose segments have integer endpoints, there is a segment with andendpoint coordinate at least 2n [5].References[1] J.Kratochv��l, J. Matou�sek: NP-hardness results for intersection graphs Comment. Math.Univ. Carolin. 30 (1989), 761-773 (MR 91c:05156)[2] J.Kratochv��l: String graphs II. Recognizing string graphs is NP-hard, J. Combin. TheorySer. B 52 (1991), 67-78 (MR 92g:05157)[3] J.Kratochv��l, J. Matou�sek: String graphs requiring exponential representations, J. Com-bin. Theory Ser. B 53 (1991), 1-4 (MR 92g:05080)[4] J.Kratochv��l: A special planar satis�ability problem and some consequences of its NP-completeness, Discrete Appl. Math. (to appear)[5] J.Kratochv��l, J. Matou�sek: Intersection graphs of segments , J. Combin. Th. Ser. B (toappear) On Triangle Contact Graphs�Hubert de Fraysseix, y Patrice Ossona de Mendez y and Pierre Rosenstiehl yVarious representations of the same planar map are described below. Vertices, edges andfaces are alternatively represented by points, arcs or disks of the plane. By representation of aplanar map, it is understood that the circular order of the edges around each vertex is preserved.An old problem of geometry consists of representing a planar mapM by a collection of disksmatched with the vertices of M . These disks are disjoint except at contact points for somepairs of them, the contacts representing the edges of M . The case of unconstrained disks ismerely solved by drawing at each vertex point v a closed curve surrounding v and half of theedges arcs incident to v, in a tubular way. The di�culty starts when the disks have to respecta prescribed shape. The famous case of circular disks, known as the Andrew-Thurston circlepacking Theorem [1], hits di�culties of numerical analysis; it has been improved to polynomialcomplexity and generalized recently [7].We are concerned here with triangular disks, such that each contact point is a vertex ofone triangle and belongs to the side of another one. This asymetry induces an orientation ofthe contact, that is an orientation of the corresponding edge. Such an arrangement is called a�This work was partially supported by the ESPRIT Basic Research Action Nr. 7141 (ALCOM II).yCNRS, EHESS, 54 Boulevard Raspail, 75006, Paris, France.21



triangle contact system. So, it is obvious that to any triangle contact system S is associatedan oriented planar map M(S). We assume below that the orientation of the contact edge istowards the triangle which gives a vertex in the contact.A �rst result is that any planar map may be represented by a triangle contact system. Theresult still holds if we impose a coloration to the triangles and the contacts in the following way :the edges taken in clockwise order are colored respectively a; b and c and each vertex is coloredas its opposite side; now a contact has to be between a vertex and a side of the same color.An instance of this orientation constraint consists of forcing the triangles to have a commonoriented angle in the a�ne plane.In the case of maximal planar mapsM the coloration of the triangles is intrinsicaly imposed.We introduce a coloration that partitions the edges not incident to the in�nite face in threeoriented trees rooted on the frame, which are nothing else but the Schnyder trees [9] of a maximalplanar map. A 3-trees decomposition of Schnyder, or a Schnyder orientation, is de�ned as anorientation of the edges besides the in�nite face and a coloration of them in three colors a; band c such that, at each vertex besides those of the in�nite face, there is exactly three incomingedges, colored respectively a; b and c in clockwise order and such that the outgoing edges ofone color are grouped in the angle formed by the two incoming edges of the other colors. Byde�nition, each color de�nes a tree rooted on the in�nite face.The construction of a colored triangle contact system representing a planar map is achievedin linear time and space (considering that arithmetic is performed in constant time over therational �eld).A variation of our main result is that any maximal planar map may be represented by anisosceles triangle contact system, each having an horizontal basis and the opposite vertex placedbelow.Let a T-shape in the (Ox;Oy) plane be a pair of an horizontal segment and a vertical oneplaced below with a contact point. A T-contact system is a collection of T's, all disjointsexcept for contact points, consisting of an extreme point from one exactly and a side pointfrom the other. We show how a colored triangle contact system is transformed into a T-contactsystem which provides very compact representations of planar graphs.A rectilinear representation of a planar map represents each vertex by an horizontalsegment and each edge by a vertical segment incident to two horizontal vertex segment [8] [10].In [8], each face ofM is represented by a disk with a lowest vertex and a highest vertex segment,a (Oy)-monotone left boundary and a (Oy)-monotone right boundary, this one being a straightsegment. Therefore, by extending each vertex segment on its right, up to the �rst met verticalsegment, the representation of M becomes a partition of a rectangle into rectangles : eachvertex is represented by an horizontal segment, each face by a vertical segment, and each edgeby a rectangular disk. Such a representation is called a tessalation representation of M . Any2-connected planar map has a tessalation representation, as also explained by Tamassia andTollis [10].Actually, all the tessalation representations of a 2-connected graph are obtained by using thebipartite planar graph representation of the radial graph by contact segments as de�ned in [3][4].We get here a tessalation representation of a maximal planar map from an interesting featureof the triangle contact representation of a maximal planar map M , that is the representationof the faces of M by triangles. In case each vertex triangle is isosceles with its basis parallel to(Ox) and the opposite vertex placed below, each face is a triangle with each basis parallel to(Ox) and the opposite vertex placed above. By drawing a vertical height segment of a properlength at each triangular face, and extending the horizontal segments of the vertex bases weobtain a tessalation representation of M . 22
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Characterisation and Construction of the Rectangular Dual ofa GraphSimone Pimont � and Michel Terrenoire yIntroductionCircuit placement consists in positionning rectangular blocks, de�ned by their area and inter-connected by nets, on a rectangular surface to be minimized. An available strategy deals withthe rectangular dualization of a connectivity graph. We introduce the notion of polarity index,then the concept of polarization, in order to characterize graphs with rectangular duals, and tobuild an associated rectangular representation.The three steps of placementThe minimization objective is approached by the construction of an initial placement (step 1),such as the sum of the lengths of the connections is minimum. This initial placement is obtainedby means of a data analysis method (a factorial analysis on a distance matrix). It de�nes in R2a set X of points corresponding to the blocks. From this placement, we de�ne a connectivitygraph G(X) that resumes the proximity relations between the corresponding points. Then, bydualization, a rectangular representation associated to G(X) is researched (step 2); that is tosay a dissection of a rectangle into rectangles for which G(X) describes the adjacency relationsamong the rectangles. In step 3, an iterative construction of rectangular placements is processed,whose objective is area minimization [FOU 89]. The related work focuses on step 2, particularlyon the characterization and on the construction of a rectangular graph.A dualization process to construct a rectangular graphWe know that a necessary condition for a planar graph to admit a rectangular dual is that it istriangular (every face, except the outer one, is a triangle) [KOZ 85, BHA 88]. So, we consider theDELAUNAY graphe D(X) associated to the set X. However the above condition is not su�cient.A triangular graph admits a rectangular dual if an only if it does not contain complex triangle[KOZ 85]. Moreover, from a triangular graph, one can built more than one rectangular dual :an edge between two nodes in the graph can correspond to a vertical or horizontal boundary inthe rectangular dual. To take into account this phenomenon, we introduce indices of polarityfor the edges [PIM 93]. The indices can take two values : horizontal or vertical. We de�ne anheuristic that assigns a polarity index to each edge of D(X) in order to construct a rectangulardual. The elimination of the complex triangles is attempted at the same time. A program wasrealized in PASCAL on PC, and in C on APOLLO. But the above polarity does not account byitself of the rectangularization. So we introduce another concept that deepens this notion.�Laboratoire d'Ingenierie des Systemes d'Information. pimont@lisisun.univ-lyon1.fryLaboratoire des methodes et analyses des systemes et des structures, Universite Claude Bernard LYON 1, 43Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex (FRANCE).24



Characterization of a dualizable graph : Polarizable graphWe consider a triangular graph H=(X,W). It admits a 4-completion graph Hc=(Xc,Wc), intro-ducing the four external vertices : North, East, South, West (see [KOZ 85] for the de�nition of4-completion).� Notations :- Z is the set Wc without the four edges [N,O] [O,S] [S,E] [E,N]- � is a mapping of Z into the set fv,hg ("v" for vertical and "h" for horizontal)- � is a mapping (named orientation) of Z into Xc : �([x,y]) is the origin of [x,y]- Hc� is the oriented graph deduced from the graph (Xc,Z) by �- a path p in Hc� is a v-path (resp. h-path) if �(w) = v (resp. h) for every edge wcorresponding to an arc of p- Nx, Ox, Sx, Ex are the set of the v-paths from N to x, the set of the h-paths from O tox, the set of the v-paths from x to S, the set of the h-paths from x to E� We suppose that for every x in X, (�,�) satis�es :- 8 [N,x] 2 Z, �([N,x]) = N and �([N,x]) = v- 8 [O,x] 2 Z, �([O,x]) = O and �([O,x]) = h- 8 [S,x] 2 Z, �([S,x]) = x and �([S,x]) = v- 8 [E,x] 2 Z, �([E,x]) = x and �([E,x]) = h� (�,�) is a polarization for Hc if for every x in X- Nx, Ox, Sx, Ex are not empty- 8 n 2 Nx, 8 o 2 Ox, 8 s 2 Sx, 8 e 2 Ex , the four sets : n \ o, n \ s, n \ e, o \ s, o \e, s \ e are reduced to xThen we can de�ne :� A graph H is polarizable if it is triangular and if it admits a 4-completion graph Hc withan associated polarization.� For each node x, we de�ne a local polarization for x, based on local properties aboutthe existence and the clockwize order of the oriented edges admitting x as endpoints.We state two theorems [PIM 93] :� Theorem 1 :A triangular graph admits a rectangular dual if an only if it is polarizable.� Theorem 2 :For a triangular graph H with an associated triangular 4-completion Hc, (�,�) is a polar-ization if and only if (�,�) is a local polarization for each vertex in Hc.ConclusionThe concept of polarity index allows us to realize a program rather e�cient over our examples;but this approach is heuristic. The concept of polarizable graph, in view of the theorems 1 and2, will enable the development of more e�cient algorithms for circuit placement. For example,we propose to choose a couple candidate for polarization, and then to modify it using the localproperties associated to the node admissible polarization. Our theoretical and practical resultsallow us to argue that the polarization and the associated properties give a pertinent frameworkto elaborate e�cient dualization algorithms. 25



References[BHA 88] J. Bhasker and S. Sahni, "A Linear Algorithm to Find a Rectangular Dual of a PlanarTriangulated Graph", Algorithmica, vol.3(2), 1988, pp. 247-278.[FOU 89] D.Fourre and S. Pimont, "Heuristique de rectangularisation de graphe pour le place-ment de circuits", rapport de recherche, Laboratoire Informatique de l'Universite deLyon 1, 1989.[KOZ 85] K. Kozminshi and E. Kinnen, "Rectangular duals of planar graph", Networks,vol.15(2), 1985, pp. 145-157.[PIM 93] S. Pimont and M. Terrenoire, "Dual rectangulaire d'un graphe pour le placement decircuit", TSI, vol.12(2), 1993, pp. 193-216.Two Algorithms for Finding Rectangular Duals of PlanarGraphsGoos Kant� Xin HeyThe problem of drawing a graph on the plane has received increasing attention due to alarge number of applications [3]. Examples include VLSI layout, algorithm animation, visuallanguages and CASE tools. Vertices are usually represented by points and edges by curves. Inthe design of 
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In this paper we present two linear time algorithms for �nding a regular edge labeling. Thetwo algorithms use totally di�erent approaches and both are of independent interests. The �rstalgorithm is based on the edge contraction technique, which was also used for drawing triangularplanar graphs on a grid [10]. The second algorithm is based on the canonical ordering for 4-connected planar triangular graphs. This technique extends the canonical ordering, which wasde�ned for triangular planar graphs [4] and triconnected planar graphs [5], to this class of graphs.Another interesting representation of planar graphs is the visibility representation, which mapsvertices into horizotnal segments and edges into vertical segments [7, 11]. It turns out that thecanonical ordering also gives a reduction of a factor 2 in the width of the visbility representationof 4-connected planar graphs.References[1] Bhasker, J., and S. Sahni, A linear algorithm to check for the existence of a rectangulardual of a planar triangulated graph, Networks 7 (1987), pp. 307-317.[2] Bhasker, J., and S. Sahni, A linear algorithm to �nd a rectangular dual of a planar trian-gulated graph, Algorithmica 3 (1988), pp. 247{178.[3] Di Battista, G., P. Eades, R. Tamassia and I.G. Tollis, Algorithms for Automatic GraphDrawing: An Annotated Bibliography, Dept. of Comp. Science, Brown Univ., TechnicalReport, 1993.[4] Fraysseix, H. de, J. Pach and R. Pollack, How to draw a planar graph on a grid, Combina-torica 10 (1990), pp. 41{51.[5] He, X., On �nding the rectangular duals of planar triangulated graphs, SIAM J. Comput.,to appear.[6] He, X., E�cient Parallel Algorithms for two Graph Layout Problems, Technical Report91-05, Dept. of Comp. Science, State Univ. of New York at Bu�alo, 1991.[7] Kant, G., Drawing planar graphs using the lmc-ordering, Proc. 33th Ann. IEEE Symp. onFound. of Comp. Science, Pittsburgh, 1992, pp. 101-110.[8] Ko�zmi�nski, K., and E. Kinnen, Rectangular dual of planar graphs, Network 5 (1985), pp.145{157.[9] Rosenstiehl, P., and R. E. Tarjan, Rectilinear planar layouts and bipolar orientations ofplanar graphs, Discr. and Comp. Geometry 1 (1986), pp. 343{353.[10] Schnyder, W., Embedding planar graphs on the grid, in: Proc. 1st Annual ACM-SIAMSymp. on Discr. Alg., San Fransisco, 1990, pp. 138{147.[11] Tamassia, R., and I. G. Tollis, A uni�ed approach to visibility representations of planargraphs, Discr. and Comp. Geometry 1 (1986), pp. 321{341.
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A More Compact Visibility Representation�Goos KantyIntroductionThe problem of \nicely" drawing a graph in the plane has received increasing attention dueto the large number of applications [1]. Examples include VLSI layout, algorithm animation,visual languages and CASE tools. Several criteria to obtain a high aesthetic quality have beenestablished. Typically, vertices are represented by distinct points in a line or plane, and aresometimes restricted to be grid points. (Alternatively, vertices are sometimes represented byline segments.) Edges are often constrained to be drawn as straight lines or as a contiguous setof line segments (e.g., when bends are allowed). The objective is to �nd a layout for a graphthat optimizes some cost function, such as area, minimum angle, number of bends, or satis�essome other constraint (see [1] for an up to date overview).One of the most beautiful ways for drawing G is by using a visibility representation. Ina visibility representation every vertex is mapped to a horizontal segment, and every edgeis mapped to a vertical line, only touching the two vertex segments of its endpoints. It isclear that this leads to a nice and readable picture, and it therefore gains a lot of interest.It has been applied in several industrial applications, for representing electrical diagrams andschemas (Rosenstiehl, personal communication). Otten & Van Wijk [9] showed that everyplanar graph admits such a representation, and a linear time algorithm for constructing it isgiven by Rosenstiehl & Tarjan [7] (independently, Tamassia & Tollis [11] came up with the samealgorithm). The size of the required grid is (2n � 5)� (n � 1), with n the number of vertices.The algorithm is based on a so called st-numbering: a numbering v1; : : : ; vn of the vertices suchthat (v1; vn) 2 G and every vertex vi (1 < i < n) has neighbors vj and vk with j < i < k. Theheight of the drawing is the longest path from v1 to vn, which has length at most n � 1. Thewidth of the drawing is the longest path in the dual graph, which is f �1, where f is the numberof faces in G (by Euler's formula: m � 3n� 6 and f = m� n+ 2).The algorithm is used in several drawing algorithms. We mention here the algorithm ofTamassia & Tollis [12] for constructing an orthogonal drawing, and the work of Di Battista,Tamassia & Tollis [3] for computing constrained visibility representations. Rosenstiehl & Tarjanalso discuss the open problems concerning the grid size of visibility representations [7]. Therequirement of using a small area seems to become a core area in the research �eld of graphdrawing, due to the important applications in VLSI-design and chip layout (e.g., see Kant [5]).In this paper we show that every planar graph can be represented by a visibility representa-tion on a grid of size at most (b32nc�3)�(n�1). This improves all previous bounds considerably.An outline of the algorithm to achieve this is as follows. Assume the input graph G is triangu-lated (otherwise a simple linear time algorithm can be applied to make it so [7]). Then we splitG into its 4-connected components, and construct the 4-block tree of G. We show that we cando this in linear time for triangulated planar graphs, thereby improving the O(n � �(m;n) +m)time algorithm of Kanevsky et al. [4] for this special case. To each 4-connected component thealgorithm of Kant & He is applied, who showed that if the planar graph is 4-connected, then a�This work was supported by ESPRIT Basic Research Action No. 7141 (project ALCOM II: Algorithms andComplexity). Part of this work was done while visiting the Graph Theory workshop at the Bellairs ResearchInstitute of McGill University (Montreal), Feb. 12-19, 1993.yDept. of Computer Science, Utrecht University, Padualaan 14, 3584 CH Utrecht, the Netherlands.goos@cs.ruu.nl 28



visibility representation of it can be constructed with grid size at most (n� 1)� (n� 1) [8]. Therepresentations of the 4-connected components are combined into one entire drawing, leading tothe desired width.References[1] Chiba, N., and T. Nishizeki, Arboricity and subgraph listing algorithms, SIAM J. Comput. 14 (1985),pp. 210{223.[2] Di Battista, G., Eades, P., and R. Tamassia, Algorithms for Automatic Graph Drawing: An Anno-tated Bibliography, Dept. of Comp. Science, Brown Univ., Technical Report, 1993.[3] Di Battista, G., R. Tamassia and I.G. Tollis, Constrained visibility representations of graphs, Inform.Process. Letters 41 (1992), pp. 1{7.[4] Kanevsky, A., R. Tamassia, G. Di Battista and J. Chen, On-line maintenance of the four-connectedcomponents of a graph, in: Proc. 32th Annual IEEE Symp. on Found. of Comp. Science, PuertoRico, 1991, pp. 793{801.[5] Kant, G., Drawing planar graphs using the lmc-ordering, Proc. 33th Ann. IEEE Symp. on Found.of Comp. Science, Pittsburgh, 1992, pp. 101{110.Revised and extended version in:[6] Kant, G., Algorithms for Drawing Planar Graphs, PhD thesis, Dept. of Computer Science, UtrechtUniversity, 1993.[7] Kant, G., On triangulating planar graphs, submitted to Information and Computation, 1993.[8] Kant, G., and X. He, Two Algorithms for Finding Rectangular Duals of Planar Graphs, Tech. ReportRUU-CS-92-41, Dept. of Computer Science, Utrecht University, 1992.[9] Otten, R.H.J.M., and J.G. van Wijk, Graph representation in interactive layout design, in: Proc.IEEE Int. Symp. on Circuits and Systems, 1978, pp. 914{918.[10] Rosenstiehl, P., and R.E. Tarjan, Rectilinear planar layouts and bipolar orientations of planar graphs,Discr. and Comp. Geometry 1 (1986), pp. 343{353.[11] Tamassia, R., and I.G. Tollis, A uni�ed approach to visibility representations of planar graphs, Discr.and Comp. Geometry 1 (1986), pp. 321{341.[12] Tamassia, R., and I.G. Tollis, Planar grid embedding in linear time, IEEE Trans. Circuits andSystems 36 (1989), pp. 1230{1234.
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Cone Visibility GraphsAnna Lubiw�IntroductionTwomain ways of representing graphs are as intersection graphs and as visibility graphs using thesymmetric relations of intersection and visibility respectively. See [G] for a survey on intersectiongraphs, and [O'R] for a survey on visibility graphs. A main di�erence between the two is thatvisibility usually carries with it the notion of \blocking"; consequently the classes of graphs areusually not closed under induced subgraphs, and are more di�cult to characterize.This work explores a class of directed graphs de�ned by means of an asymmetric relationshipwhich has some of the features of intersection and some of the features of visibility. Let P bea set of points in the plane. With each point p let there be an ordered pair of rays r1(p); r2(p)emanating from the point, determining the closed clockwise cone C(p) going from r1(p) to r2(p).The cone visibility digraph of this con�guration is a directed graph on vertex set P , with an edgefrom vertex p1 to vertex p2 i� p2 is contained in the cone C(p1). A digraph is a cone visibilitydigraph if it has such a representation (for some choice of points and cones).These are \visibility" graphs in the sense that the cone at a point determines which otherpoints it can \see". There are two di�erences between this notion and previous de�nitions ofvisibility graphs: one is that the relationship is asymmetric so the graphs are directed; another isthat there is no notion of \blocking"|whether one point sees a second point is independent of theother points. There are two signi�cant consequences of this: One is that cone visibility graphs areclosed under induced subgraphs|thus there might be be a forbidden subgraph characterizationof the class. Another consequence is that given a representation of a cone visibility graph, thereis an O(1) test for whether two points are joined by an edge|thus a cone visibility representationof a graph is a very e�cient representation.Relationship to visibility graphs of polygonsUndirected cone visibility graphs can be obtained by symmetrizing the relationship: put anundirected edge between p1 and p2 i� p1 is in the cone C(p2) and p2 is in the cone C(p1). Thesegraphs have enough relation to visibility graphs of polygons that an understanding of themmay help us understand visibility graphs of polygons. Given a simple polygon in the plane, thevertices and edges determine a cone system in the obvious way. The undirected cone visibilitygraph contains all the edges of the visibility graph of the polygon, plus edges joining verticeswhose visibility in the polygon is blocked by an edge not incident with either vertex.Relationship to dimension of posetsWhenever the rays r1(p) are all parallel (for all points p), and the rays r2(p) are all parallel,and the angle between them is no more than 180�, then the resulting cone visibility digraph isa poset. See [T] for information on posets. In particular, when all the rays r1(p) are parallelto the positive y axis, and all the rays r2(p) are parallel to the positive x axis, the realizablecone visibility digraphs are exactly the posets of dimension 2. A poset has dimension n if it�Research supported by NSERC. Department of Computer Science, University of Waterloo, Waterloo, Ontario,Canada, N2L 3G1. alubiw@uwaterloo.ca 30



can be realized in n-dimensional space as the visibility digraph of cones that are translates ofthe positive quadrant, but cannot be so realized in a lower-dimensional space. The bipartitegraph Sn with vertices v1; : : : ; vn and u1; : : : ; un and an edge from vi to uj i� i 6= j is a standardexample of a poset of dimension n. Though Sn, for n > 2, does not have dimension 2, it is acone visibility digraph (in the plane).Positive resultsAmong the undirected graphs that are cone visibility graphs are trees, cycles, complete graphs,complete bipartite graphs, and bipartite permutation graphs. These results are not di�cult andare proved by giving constructions. Turning to digraphs, it is not di�cult to show that treesand cycles with arbitrary directions on the edges are cone visibility digraphs.Negative resultsThis section is joint work with Jonathan F. Buss. One example of a graph that is not a conevisibility digraph is the bipartite graph with vertex set V1 [ V2 where jV1j = 11 and V2 has avertex corresponding to each of the �113 � triples of V1 with edges to those three vertices of V1. Toprove that this graph is not a cone visibility digraph it su�ces to prove that it is not possible toarrange 11 points in the plane so that every triple can be separated from the remaining points bya cone. We cannot have 6 points forming a convex 6-gon, otherwise the three odd points aroundthe 6-gon cannot be separated. We also cannot have three or more convex hulls in the onionpeeling of the point set, otherwise three points of the middle convex hull cannot be separated.But with 11 or more points, we cannot avoid both these situations.Open questionsCharacterize cone visibility digraphs and/or �nd a good recognition algorithm.References[G] M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs . Academic Press, 1980.[O'R] J. O'Rourke. Art Gallery Theorems and Algorithms . Oxford University Press, 1987.[T] W.T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory . The JohnsHopkins University Press, 1992.
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Circle Packing Representations in Polynomial TimeBojan Mohar�The Andreev-Koebe-Thurston [1, 2, 3, 5] circle packing theorem is generalized and improvedin two ways. Simultaneous circle packing representations of the map and its dual map areobtained such that any two edges dual to each other cross at the right angle. The necessaryand su�cient condition for a map to have such a primal-dual circle packing representation isthat its universal cover graph is 3-connected. A polynomial time algorithm is obtained thatgiven such a map M and a rational number " > 0 �nds an "-approximation for the primal-dualcircle packing representation of M . In particular, there is a polynomial time algorithm thatproduces simultaneous geodesic line convex drawings of a given map and its dual in a surfacewith constant curvature, so that only edges dual to each other cross.In combination with graph embedding algorithms [4], these results give rise to e�cient algo-rithms for drawing graphs on general surfaces.References[1] E. M. Andreev, On convex polyhedra in Loba�cevski�i spaces, Mat. Sb. (N. S.) 81 (1970)445{478; Engl. transl. in Math. USSR Sb. 10 (1970) 413{440.[2] E. M. Andreev, On convex polyhedra of �nite volume in Loba�cevski�i space, Mat. Sb. (N. S.)83 (1970) 256{260; Engl. transl. in Math. USSR Sb. 12 (1970) 255{259.[3] P. Koebe, Kontaktprobleme auf der konformen Abbildung, Ber. Verh. Saechs. Akad. Wiss.Leipzig, Math.-Phys. Kl. 88 (1936) 141{164.[4] B. Mohar, Generalizing Kuratowski Theorem, this workshop.[5] W. P. Thurston, The geometry and topology of 3-manifolds, Princeton Univ. Lect. Notes,Princeton, NJ.Obstructions for Embedding Extension ProblemsBojan Mohar,� Martin Juvan� and Jo�ze Marin�cek �Kuratowski's theorem gives rise to linear time algorithms which for a given graph determinewhether the graph is planar (Hopcroft and Tarjan [7], Booth and Lueker [2], Fraysseix andRosenstiehl [FR91]). The extensions of original algorithms also produce an embedding [4], or�nd a Kuratowski subgraph [24].The result of Kuratowski has been generalized to non-orientable surfaces by Archdeaconand Huneke [2] and in a much more general setting to arbitrary surfaces by Robertson andSeymour [18]. They proved that for every �xed surface there is a �nite set of obstructions forembeddability of graphs in this surface.�University of Ljubljana, Slovenia�University of Ljubljana 32



Although the genus problem is NP-hard [6], for every �xed surface there is a polynomialtime algorithm which checks if a given graph can be embedded in the surface (Filotti et al. [5],Robertson and Seymour [18, 22], O(n3) algorithm using graph minors, O(n2 logn) improvementby B. Reed [19, 20, 21]). A constructive version in [1] has running time O(n10).Let K � G, and suppose that we are given a 2{cell embedding of K into a (closed) surface �.The embedding extension problem asks whether it is possible to extend the given embedding ofKto an embedding of G. In our talk we will brie
y report on our results concerning the embeddingextension problem. We are able to determine in linear time if the given 2-cell embedding of Kcan be extended to G. In case of a positive answer, such an extension is exhibited. Otherwise, anobstruction is given. Obstructions are not always small but they can be completely characterized.This enables us to get:(a) a relatively short proof (in total approx. 100 pages) of the Kuratowski's Theorem forgeneral surfaces, and(b) a linear time algorithm that for every �xed surface S solves the embeddability problemin S. In case of the positive answer, the algorithm also exhibits an embedding, in case of thenegative answer, we get a small obstruction | a subgraph which can not be embedded in S andwhose number of branches is small.In [13], a linear time algorithm for embedding graphs in the projective plane is given.[14] presents the solution to the embedding extension problems in a disk or a cylinder. In [15],M�obius band and the projective plane obstructions are characterized and linear time algorithmsfor their discovery are presented.The essential work is [16] Let B be a bridge of K in G. It is shown that B contains anice (small up to a small number of almost disjoint millipedes) subgraph ~B such that if K is2-cell embedded in some surface and F is a face of K, then ~B admits exactly the same types ofembeddings in F as B. Moreover, such a universal obstruction ~B can be constructed in lineartime.In [12] a special case of the embedding extension problem is solved when we are restrictedfor every bridge of K in G to have at most two essentially di�erent embeddings.The paper [10] contains a linear time algorithm for embedding graphs in the torus. It issupported by two other works [8, 9]. This is the other essential step of our work.In [17], the generalization of the Kuratowski Theorem is proved.Finally, [11] presents a linear time algorithm for embedding graphs in a general (�xed)surface.References[1] D. Archdeacon, The complexity of the graph embedding problem, in \Topics in Combina-torics and Graph Theory," R. Bodendiek and R. Henn (ed.), Physica-Verlag, Heidelberg,1990, pp. 59{64.[2] D. Archdeacon, P. Huneke, A Kuratowski theorem for non-orientable surfaces, J. Combin.Theory, Ser. B 46 (1989) 173{231.[3] K. S. Booth, G. S. Lueker, Testing for the consecutive ones property, interval graphs, andgraph planarity using PQ-trees, J. Comput. System Sci. 13 (1976) 335{379.[4] N. Chiba, T. Nishizeki, S. Abe, T. Ozawa, A linear algorithm for embedding planar graphsusing PQ-trees, J. Comput. System Sci. 30 (1985) 54{76.[5] I. S. Filotti, G. L. Miller, J. Reif, On determining the genus of a graph in O(vO(g)) steps,in \Proc. 11th Ann. ACM STOC," Atlanta, Georgia (1979) pp. 27{37.33



[6] H. de Fraysseix, P. Rosenstiehl, A depth-�rst search characterization of planarity, Ann.Discr. Math. 13 (1982) 75{80.[7] J. E. Hopcroft, R. E. Tarjan, E�cient planarity testing, J. ACM 21 (1974) 549{568.[8] M. Juvan, J. Marin�cek, B. Mohar, Elimination of local bridges, submitted.[9] M. Juvan, J. Marin�cek, B. Mohar, Corner obstructions, submitted.[10] M. Juvan, J. Marin�cek, B. Mohar, Embedding graphs in the torus, in preparation.[11] M. Juvan, J. Marin�cek, B. Mohar, E�cient algorithm for embedding graphs in arbitrarysurfaces, in preparation.[12] M. Juvan, B. Mohar, A linear time algorithm for the 2-restricted embedding extensionproblem, in preparation.[13] B. Mohar, Projective planarity in linear time, J. Algor., in press.[14] B. Mohar, Obstructions for the disk and the cylinder embedding extension problem, sub-mitted.[15] B. Mohar, Obstructions for the M�obius band embedding extension problem, submitted.[16] B. Mohar, Universal obstructions for embedding extension problems, submitted.[17] B. Mohar, Generalizing Kuratowski's Theorem, in preparation.[18] N. Robertson, P. D. Seymour, Graph minors. VIII. A Kuratowski theorem for generalsurfaces, J. Combin. Theory, Ser. B 48 (1990) 255{288.[19] N. Robertson, P. D. Seymour, Graph minors. XIII. The disjoint paths problem, preprint,last revision of February 1992.[20] N. Robertson, P. D. Seymour, Graph minors. XXI. Graphs with unique linkages, preprint,1992.[21] N. Robertson, P. D. Seymour, Graph minors. XXII. Irrelevant vertices in linkage problems,preprint, 1992.[22] N. Robertson, P. D. Seymour, An outline of a disjoint paths algorithm, in: \Paths, Flows,and VLSI-Layout", Springer, 1990, pp. 267{292.[23] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms 10 (1989) 568{576.[24] S. G.Williamson, Depth-�rst search and Kuratowski subgraphs, J. ACM 31 (1984) 681{693.Automorphisms and Genus on Generalised MapsAntoine Bergey �Various combinatorial data structures were suggested to encode topological maps (2-cellembedding of a connected graph in a compact, connected, orientable surface without boundary).One of them is combinatorial map (or simply 2-maps), wich are triples C = (B; �; �) such that� and � are two permutations on the set B [3, 1]. The cycles of � are called the edges of the2-map : the cycles of �, the vertices ; and those of ��, the faces of the 2-map C. Thus we can�LaBRI, Universit�e BORDEAUX I, TALENCE 33405. bergey@labri.u-bordeaux.fr34



de�ne, in a purely combinatorial way, the genus of a 2-map. We will say that a 2-map is planarif its genus is equal to 0.An automorphism on a 2-map C = (B; �; �) consists of a permutation � such �� = �� and�� = ��. Let C be a combinatorial map encoding a topological map C. We can associate witheach orientation-preserving automorphism of C, an automorphism � on C. Many analoguesof well-known results in Riemann surfaces theory were proven concerning automorphisms oncombinatorial maps [1]. In particular, it can be shown that an automorphism on a planar maphas two (and only two) �xed points [2].Lienhard suggested n-maps and n-G-maps (a set B together with n or n + 1 permutationson B) as extensions of combinatorial maps in order to describe subdivisions of orientable ornon-orientable spaces of dimension n, possibly with boundary [4, 5].G = (B; �0; �1 : : : ; �n) is a n-G-map if : permutations �i (i < n) and products �i�j (ji� jj � 2)are involutions without �xed points ; �n is an involution ; G is connected.A connected component of Gi = (B; �0 : : : ; �i�1; �i+1 : : : ; �n) is called an i-cell.Let us de�ne an automorphism on a n-G-map or n-map G in the following way : a per-mutation � wich commutes with every permutation of G is called an automorphism of G. Weconsider automorphisms on n-G-maps without boundary.We show that if an n-G-map G is orientable, then the automorphisms of G fall into twoclasses (� and �) of automorphisms : orientation-preserving automorphisms (�) and orientation-reversing automorphisms (�). Obviously, � is a subgroup of the group of the automorphisms ofG. Let G be the n-map associated with an orientable n-G-map G. As n-maps describe onlyorientable subdivisions, we can associate in a one-to-one manner an orientation-preserving au-tomorphism of G to each automorphism of G.Therefore, in 2 dimensions, more information about the symmetry of a topological map isgiven using 2-G-maps instead of 2-maps encoding.� We can express any orientation-reversing symmetry of a topological map C as an automor-phism of the associated 2-G-mapG. For example : when C is a planar map, automorphismsof G are associated with symmetries around the center of the sphere or equatorial planes.� As we can use a 2-G-map G to encode graph drawings on non-orientable surfaces, we canalso treat symmetries of such embeddings as an automorphism of G.Let � be an automorphism of a 2-G-map G. We show that there are two classes of cellsthat are �xed by �, let us call them even and odd-cells respectively. Let us consider relationsbetween genus, orientability of G and the number of cells left �xed by �.When G is orientable, � has only odd-cells if it is an orientation-reversing automorphism, even-cells if it preserves the orientation.If the genus of G is equal to 0, then � has two even-cells if G is orientable, one if G is notorientable.We show that every odd-cell is adjacent exactly to two odd-cells. Thus, we can de�ne ovals ofodd-cells. These adjacency relations implie that :� each oval contains an even number of odd-cells ;� we have nv � nf + ne, ne � nf + nv, nf � nv + ne, where ne, nv , and nf are the numbersof odd-edges, odd-faces, and odd-vertices respectively.35



If there are at least one odd-cell, then the automorphism � is an involution. When G is orientable,these ovals can be considered as the intersection of the symmetry plane (associated with �) withthe surface on which the graph is drawn. Moreover, when G is orientable, we �nd an analogueto Harnack's theorem. More precisely, we haveg � no � 1where g is the genus of G and no the number of ovals. This is shown by exhibiting G0, a2-G-submap of G, wich is of genus no � 1.Let C be a planar topological map C encoded by a 2-G-map G and let O be an oval of anautomorphism on G. Splitting the topological map along O let us get symmetrical drawings inthe following way : we divide C along the cells of O into two parts C> and C? ; we draw C> onthe top-side of the sphere (each cell of O lying on the equatorial plane) ; then the bottom-sideof the sphere is symmetrical in relation to the equatorial plane.In other algorithms, these splittings may be usefull in order to save space or time.References[1] R. Cori, A. Mach��. Maps and Hypermaps : a survey I, II, III. Expositiones Mathematicae,10 (1992) 403{467.[2] R. Cori, A. Mach��, J.G. Penaud and B. Vauquelin, On the automorphism group of a planarhypermap, Europ. J. Combinatorics 2 (1981) 331-334.[3] J. Edmonds. A combinatorial representation for polyhedral surfaces, Notices Amer. Math.Soc., 7, 1970.[4] P. Lienhardt. Topologic models for boundary representation : a comparison with n-dimensional generalized maps, computer-aided design. 23 1 (1991) 59{82.[5] P. Lienhardt. Subdivisions de surfaces et cartes g�en�eralis�ees en dimension 2, RAIRO The-oretical Informatics and Appications, 25 2 (1991) 171{202.Upward Drawing on SurfacesIvan Rival �Extended AbstractThe modern theoretical computer science literature is preoccupied with e�cient data structuresto code and store ordered sets. Among these data structures, graphical ones play a decisiverôle, especially in decision-making problems. Choices must be made from among alternativesranked hierarchically according to precedence or preference. And, loosely speaking, graphicaldata structures must be drawn in order that they may be easily read.Besides the well known metaphors inspired by layout design, project management, anddatabase design, several unexpected application areas are driving our recent investigations:�Department of Computer Science, University of Ottawa, Ottawa K1N 6N5 Canada. rival@csi.uottawa.ca36



(i) Ice 
ows consisting of vast areas of ice, largely of recent vintage (a few years old), inter-spersed with old ice (many years old) pose a profound danger to boats and oil-rigs, indeed,for any man-made vessel at all. Ocean currents, wind, and temperature a�ect the icebergs'direction of 
ow, changing position and velocity substantially | even within hours.(ii) The increasing use of personal workstations has led to program visualization techniques inorder to grasp complex computer programs. Fisheye techniques provide one such tool toelucidate the structure and behaviour of computer programs. That, in turn, can simplify,and hence advance the e�ectiveness of programming.(iii) Inspired by the problem to unify the known forces, quantum topology combines space andtime to produce a 4-dimensional picture of the world. In this rari�ed air, current researchin physics meets up with classical mathematics.From the viewpoint of graph drawing there is a common thread to these themes. Eachinvolves an ordered set (whether it consists of moving icebergs, hierarchies of subroutines, orlight cones) and each views the ordered set monotonically on a two-dimensional surface. Weare led ineluctably to study upward drawings of ordered sets with vertices drawn on an orientedsurface (usually in 3{space) whose edges are monotonice paths with respect to the z-axis. Thetools of topological graph theory and the traditional machinery of di�erential topology , may bebrought to bear.Here are some of the highlights of our work.1. Every triangle-free graph has a planar upward drawing.[Kisielewicz/Rival 1993]2. Every ordered set has an upward drawing on a vertical multiple-holed torus.[Nowakowski/Rival 1989]3. The order genus of an ordered set is an invariant among all of the orientations of itscovering graph.[Ewacha/Li/Rival 1991]4. Every bounded ordered set of genus g has an upward drawing on a surface with precisely gsaddlepoints. [Musin/Rival/Tarasov 1993]These results, in turn, create new algorithmic considerations. For instance, as the coveringgraph of an ordered is triangle-free, we must replace the commonplace reliance on triangula-tion by an analogous, but di�erent, subdivision: pentangulation. They inspire intriguing (anddisarmingly simple) questions, too: does every ordered set have a cellular upward drawing on asurface?ReferencesK. Ewacha, W. Li, and I. Rival (1991) Order, genus and diagram invariance, ORDER, 8, 107{113.A. Kisielewicz and I. Rival (1993) Every triangle-free graph has an upward drawing, ORDER10, 1{16.O. R. Musin, I. Rival and S. Tarasov (1993) Upward drawings on surfaces and the index ofsingularity, manuscript.R. Nowakowski and I. Rival (1989) Bending and stretching orders into three channels, Technicalreport, University of Ottawa. 37



I. Rival (1993) Reading, drawing and order, Algebras and Order (eds. I. Rosenberg and G.Sabidussi), NATO ASI , Kluwer, pp. 359{404.Tessalation and Visibility Representations of Maps on theTorusBojan Mohar� and Pierre Rosenstiehl �It is shown that maps on the torus whose universal covering graph is 2-connected behavevery much like 2-connected plane graphs. In particular, the results on visibility, tessalationrepresentations and upward drawings of plane graphs are generalized to maps on the torus.A Simple Construction of High RepresentativityTriangulationsTeresa M. Przytycka � and J�ozef H. Przytycki yOne natural way of drawing a topological surface is to start with a drawing of its triangu-lation. Thus one can ask which triangulation of a given surface leads to a nice drawing of thesurface. The best candidate for such a triangulation is a triangulation in which all vertices are\evenly distributed" over the surface. Such a triangulation can be achieved by maximizing aparameter of surface triangulation called representativity.The concept of the representativity of a graph embedding was introduced by Robertson andSeymour [5]. Robertson and Vitray [6] consider as a major e�ect of high representativity the factthat it makes the embedding \highly locally planar" and that \the locally Euclidean propertyof the surface is mirrored by the locally planar property of the embedded graph".Formally, the representativity of a graph G embedded in a surface � is equal to the lengthof the shortest noncontractible facial walk (a walk of type v1; f1; v2; f2; : : : ; vk; fk; v1, where forany i vi is a vertex, fi is a face of the graph and vi; vi+1 are vertices of fi). In particular, therepresentativity of a surface triangulation is equal to the length of the shortest noncontractiblecycle of the triangulation. (Recall that a cycle, C, on a surface � is called noncontractible ifnone of the components of �� C is homeomorphic to an open disc.)It is not known what is the highest possible representativity that can be achieved when tri-angulating a genus g surface, �g, with an n-vertex graph. Joan Hutchinson [2] showed that therepresentativity of such a triangulation is at most c00pn=g log g, where c00 is a constant. Hutchin-son gave a simple construction that allows to triangulate �g with representativity �(pn=g). Thisresult was improved to 
(pn=g log� g)([3]) and further 
(pn=gplog log g) ([4]) using a coveringspaces technique.�University of Ljubljana, Slovenia and EHESS, Paris.�Department of Mathematics and Computer Science, Odense University, DK-5230 Odense M, Denmark. przy-tyck@imada.ou.dk & jozef@imada.ou.dk 38



In this paper, we improve substantially the previously known lower bound for the repre-sentativity of such a triangulation and give an e�cient algorithm for its construction. Moreprecisely, we present an O(max(g2; n))-time algorithm that, for given g and n such that g > 1and n > c0g log g, constructs an n-vertex triangulation of a genus g surface, �g, such that therepresentativity of the triangulation is at least cpn=gplog g (where c; c0 are constants). Weextend our result to nonorientable surfaces and surfaces with boundary. In the later case wereplace the genus, g, of the surface with parameter g0 = g + d=2, where d is the number ofboundary components.In our construction we use a relation between cubic graphs and orientable surfaces withoutboundary. Namely, given a 2N -vertex cubic graph, G0, one can construct an orientable surface�g, where g = N+1. In fact, �g can be taken as a tubular neighborhood of G0 embedded in R3.Then we can move G0 so that it is embedded in �g and thus all cycles of G0 are noncontractiblein �0.Let ` be the girth (the length of the shortest cycle) of G0. Given the embedding of a cubicgraph G0 as described above, we construct a triangulation of �g by adding new vertices insuch a way that no noncontractible cycle shorter than ` is introduced. The total number ofvertices added is Ng = O(N`). The construction takes O(Ng) time. Thus to maximize therepresentativity of the triangulation obtained using this construction we should start with G0being a (3; `)�cage, where a (3; `)-cage is a cubic graph with girth ` and the smallest possiblenumber of vertices. Unfortunately, there is no e�cient algorithm that, for a given value `,constructs a (3; `)-cage. However, by a theorem of Erd�os and Sachs [1], for any integer `, thereexists a cubic graph of girth ` and O(2`) vertices.Based on the proof of the theorem of Erd�os and Sachs we give an O(N2)-time algorithm toconstruct a cubic graph with 2N vertices and girth �(logN). This gives us, for any N � 1,an Ng-vertex triangulation, Tg; of �g such that representativity of Tg is �(logN) and Ng =O(N logN). Thus the lower bound claimed is achieved for n = Ng. The next step is to extendthe lower bound to all values of n. We achieve this by appropriate subdivision of the triangulationTg. Finally, we show an extension of the construction to nonorientable surfaces and surfaceswith boundary. We achieve this by cutting some handles of the surface �dg0e along edges of theTdg0e. To obtain triangulations of nonorientable surfaces we cap o� at most two of the holescreated in the above construction with (triangulated) M�obius bands.References[1] P.Erd�os, H.Sachs. Regul�are Graphen gegebener Taillenweite mit minimaler Knotenzahl,Wiss. Z. Univ. Halle-Wittenberg Math.-Nat. 12 (1963), 251-257[2] J.Hutchinson, On short noncontractible cycles in embedded graphs, SIAM J. Disc. Math,(1988) 185-192.[3] T.M.Przytycka, J.H.Przytycki, On lower bound for short noncontractible cycles in embed-ded graphs, SIAM J. Disc. Math, (1990) 281-293.[4] T.M.Przytycka, J.H.Przytycki, Surface Triangulations Without Short Noncontractible Cy-cles, Contemporary Mathematics, Graph Structure Theory 147, (1993) 303{349.[5] N.Robertson, P.D.Seymour, Graph minors. VII. Disjoint paths on a surface, J.Comb. The-ory, Ser. B, 48 (1990), 212-254.[6] N.Robertson, R.Vitray, Representativity of surface embeddings. Algorithms and Combi-natorics, Volume 9, Paths, Flows and VLSI-Layout. Springer-Verlag, Berlin, Heidelberg,Volume Editors: B. Korte, L. Lov�asz, H. J. Promel, and A. Schrijver, (1990), 293 - 328.39



On a Visibility Representation for Graphs in ThreeDimensionsProsenjit Bose,� Hazel Everett,y S�andor Fekete,z Anna Lubiw,x Henk Meijer,{Kathleen Romanik,k Tom Shermer�� and Sue WhitesidesyyVisibility representations of graphs map vertices to sets in Euclidean space and expressedges as visibility relations between these sets. Application areas such as VLSI wire routingand circuit board layout have stimulated research on visibility representations where thesets belong to R2. Here, motivated by the emerging research area of graph drawing, westudy a 3-dimensional visibility representation.Consider an arrangement of closed, disjoint rectangles in R3 such that the planes deter-mined by the rectangles are perpendicular to the z (vertical) direction, and the sides of therectangles are parallel to the x or y (horizontal) directions. A vertical thick line of sightbetween two rectangles Ri and Rj is a closed cylinder C of non-zero length and radius suchthat the ends of C are contained in Ri and Rj , the axis of C is parallel to the z direction,and the intersection of C with any other rectangle in the arrangement is empty. We callsuch an arrangement a B-representation of an abstract graph G = (V;E) if, and only if,the following hold:� there exists a 1-1 onto correspondence between the rectangles and the vertices, and� vertices vi and vj are adjacent if, and only if, their corresponding rectangles Ri andRj have a vertical thick line of sight between them.Our main results are as follows. All planar graphs are B-representable, as are many non-planar graphs. In particular, Km;n is B-representable for all m and n, and Kn is B-representable for values of n � 20. However, Kn is not B-representable for n � 103. Wehave also considered variants of B-representations.B-representability of planar graphs: The proof that all planar graphs are B-representablehas two main ingredients. The �rst is the result due independently to Wismath[W] andto Tamassia and Tollis[TT] that any 2-connected planar graph has what [TT] calls an �-visibility representation. (Vertices correspond to closed, disjoint, horizontal line segmentsin the plane, and two vertices are adjacent in the graph if, and only if, their correspondingsegments can be joined by a vertical band of non-zero width (and length) with ends lyingin the segments.) The second ingredient is the use of the 3rd dimension to deal with cutvertices. This is similar to an idea of [W] for obtaining a visibility representation for allplanar graphs by rectangles in R2 that can look in both x and y directions.�McGill University, Canada. jit@mu�.cs.mcgill.cayUniversit�e du Qu�ebec �a Montr�eal, Canada. hazel@opus.cs.mcgill.cazSUNY Stony Brook, USA. sandor@ams.sunysb.eduxUniversity of Waterloo, Canada. alubiw@maytag.uwaterloo.ca{Queen's University, Canada. henk@qucis.queensu.cakMcGill University, Canada. romanik@opus.cs.mcgill.ca��Simon Fraser University, Canada. shermer@cs.sfu.eduyyMcGill University, Canada. sue@cs.mcgill.ca 40



B-representability of Km;n and Kn: Km;n has a simple, general B-representation for allm;n, but this is not the case forKn. While we have constructed an explicit B-representationfor K20, and hence for Kn, n � 20, we have also shown that Kn has no B-representationfor n � 103. We conjecture that n = 20 is close to the correct bound.Non-B-representability of Kn for n � 103: In any B-representation of a complete graph,no two rectangles can lie on the same z=constant plane. Also, if Kn has a B-representation,then it has one in which no two rectangles have sides at the same x or y=constant values.In other words, Kn can be represented by rectangles that can be linearly ordered by zcoordinate and also, by x coordinate of left side, x coordinate of right side, y coordinateof top side and y coordinate of bottom side. To obtain the result, we use such orderingstogether with repeated application of the following result of Erd�os and Szekeres[ES]:For any positive integers j and k, any sequence of more than jk distinct integers has a (notnecessarily contiguous) increasing subsequence of length j + 1 or decreasing subsequence oflength k + 1.Variations: Our representation ofK20 can be carried out with squares, provided the squaresneed not have the same area. Representations by discs, unit squares, and squares for com-plete graphs and for complete bipartite graphs have been considered.Acknowledgment: Our study of B-representations began at Bellairs Research Instituteof McGill University during the Workshop on Visibility Representations organized by S.Whitesides and J. Hutchinson, February 12-19, 1993. We are grateful to the other conferenceparticipants Joan Hutchinson, Goos Kant, Marc van Kreveld, Beppe Liotta, Steve Skiena,Roberto Tamassia, Yanni Tollis, and Godfried Toussaint.References[ES] Erd�os, P. and Szekeres, A., \A combinatorial problem in geometry, " CompositioMathematica v. 2 (1935), 463-470.[TT] Tamassia, R. and Tollis, I. G., \A uni�ed approach to visibility representations ofplanar graphs," Discrete Comput. Geom. v. 1 (1986), 321-341.[W] Wismath, Stephen Kenneth. Bar-Representable Visibility Graphs and a Related Net-work Flow Problem. University of British Columbia, Dept. of Computer Science Tech-nical Report 89-24, August 1989.On Graph Drawings with Smallest Number of FacesJianer Chen, � Saroja P. Kanchi, � and Jonathan L. GrossyWe report here our recent progress in the study of graph drawings with the smallest numberof faces, or equivalently, graph embeddings with the largest genus. Formally, the maximum�Department of Computer Science, Texas A&M University, College Station, TX 77843-3112. chen@cs.tamu.edu& skanchi@cs.tamu.edu.yDepartment of Computer Science, Columbia University, New York, NY 10027.41



genus 
M(G) of a connected graph G is de�ned to be the largest integer k such that thereexists a cellular embedding of G into the orientable surface of genus k.Since the introductory investigation of maximum genus by Nordhaus, Stewart, and White[5], there has been considerable interest in maximum genus embeddings of graphs. Two out-standing results in this research are Xuong's characterization of maximum genus embeddingin terms of components of the complements of spanning trees [9] and a �rst polynomial-timealgorithm for computing maximum genus developed by Furst, Gross, and McGeoch [3].Recent investigations have focused on deriving a lower bound on the maximum genus ofgraphs. Skoviera [8] showed that the maximum genus of a 2-connected graph of diameter 2is at least d�(G)=2e�2. More recently, Chen and Gross [1] proved that the maximum genusof a 2-connected simplicial graph or of a 3-connected graph is at least 
(log �(G)). The lastresult was further improved by Chen, Gross, and Rieper [2] who proved that the maximumgenus of a 2-connected simplicial graph G is at least �(G)=8. A related topic, the upper-embeddability of graphs, has also been studied extensively in literature [5, 4, 6, 7, 11, 8, 10].In this paper, we prove that 
M(G) > �(G)=4 for a simplicial graph G, and we show thatour bound is tight. Our proof selectively sharpens Xuong's characterization of the maximumgenus embedding. We �rst show that every 3-regular simplicial graph G has a Xuong tree Tsuch that every odd component in the Xuong co-tree G�T has only one edge. This enablesus to compare the number of odd components to the number of even components in theXuong co-tree and thereby arrive at an upper bound for the number of odd components.This upper bound is used to obtain the desired lower bound for the maximum genus ofa 3-regular simplicial graph. Finally, the restriction of 3-regularity is removed by using atheorem of Chen and Gross concerning edge-contractions.Our result on the lower bound of maximum genus has several interesting consequences tothe average genus of graphs. Using techniques developed by Chen and Gross, we show thatthe average genus of a simplicial graph is at least 1=8 of its cycle rank. This improves aresult by Chen, Gross and Rieper [2] that the average genus of a 2-connected simplicialgraph is at least 1=16 of its cycle rank. Moreover, our result implies that the average genusof a simplicial graph is at least 1=4 of its maximum genus, thereby complementing anotherresult of Chen, Gross and Rieper [2] that for a 3-regular graph, the average genus is at leasthalf its maximum genus.References[1] J. Chen and J. L. Gross, Limit points for average genus I. 3-connected and 2-connected simplicial graphs, J. Combinatorial Theory B 55, (1992), 83-103.[2] J. Chen, J. L. Gross, and R. G. Rieper, Lower bounds for the average genus,Submitted for publication, (1991).[3] M. L. Furst, J. L. Gross, and L. A. McGeoch, Finding a maximum-genusgraph imbedding, J. of ACM 35-3, (1988), 523-534.[4] L. Nebesk�y, Every connected, locally connected graph is upper imbeddable, J.Graph Theory 5, (1981), 205-207.[5] E. Nordhaus, B. Stewart, and A. White, On the maximum genus of a graph,J. Combinatorial Theory B 11, (1971), 258-267.[6] R. Ringeisen, \The maximum genus of a graph," Ph.D. thesis, Department ofMathematics, Michigan State University, East Lansing, MI, 1970.42



[7] R. Ringeisen, Determining all compact orientable 2-manifolds upon which Km;nhas 2-cell imbeddings, J. Combinatorial Theory B 12, (1972), 101-104.[8] M. Skoviera, The maximum genus of graphs of diameter two, Discrete Mathematics87, (1991), 175-180.[9] N. H. Xuong, How to determine the maximum genus of a graph, J. CombinatorialTheory B 26, (1979), 217-225.[10] N. H. Xuong, Upper-imbeddable graphs and related topics, J. Combinatorial TheoryB 26, (1979), 226-232.[11] J. Zaks, The maximum genus of cartesian products of graphs, Canad. J. Math. 26-5,(1974), 1025-1035.A Flow Model of Low Complexity for Twisting a LayoutMarc Bousset �We deal with (s; t)-bipolar orientations of a 2-connected plane graph G, taking local orien-tation constraints into account. A laterality constraint links the orientations of two edgesadjacent in the circular order around a vertex in the following way :� an extremal constraint on an angle implies that the two edges adjacent to that angleare either both outgoing or both incoming,� a lateral constraint on an angle implies that among the two edges adjacent to thatangle, one is incoming and one is outgoing.Our approach is based on the theory of the (s; t)-bipolar marking of the angle graph bG (aspecial 2-colour marking of the edges of bG) introduced by P. Rosenstiehl. There is a one-to-one correspondance between (s; t)-bipolar markings of bG and (s; t)-bipolar orientationsof G.The local invariants on the colours around each vertex and around each face allow us totranslate the problem into mathematical programming, namely into a 
ow model. Thenetwork is built upon the angle graph bG, to which we add two nodes S and T . We also addedges from S to each vertex of G (V-edges) and from each face of G to T (F-edges). Thecapacities of the angles are 1 (when there are no constraints). The capacities of the V-edgesare 2 except for (S; s) and (S; t) for which they are zero. The capacities of each F-edge (f; T )is equal to the degree of the face f minus 2. A maximum 
ow in this network saturatesboth the V-edges and the F-edges, and the 
ow through each angle gives an (s; t)-bipolarmarking.The integer capacities around S and T and the unit capacities elsewhere allow us to extenda result of R. E. Tarjan, that is : a drastic reduction of the complexity of the maximum
ow algorithm down to O(mpm) for Dinic's algorithm.Laterality constraints are enforced by modifying the capacities on the angles. When no(s; t)-bipolar marking consistant with the constraints exists, the maximum 
ow does not�C.A.M.S. - E.H.E.S.S, Paris. bousset@dassault-avion.fr43



saturate all the V-edges and the F-edges. It is then possible to identify a set of angles I sothat relaxing the constraints on all angles of I guarantees the existence of an (s; t)-bipolarmarking compatible with the remaining constraints.The method developed here has been implemented in an industrial context in a CAD systemfor generating layouts of electrical networks, and also in the TWIST software, created forthe ALCOM project.References[1] M. Bousset and P. Rosenstiehl. TWIST (Version 1), 1990. ALCOM report 90-73.[2] M. Bousset and P. Rosenstiehl. TWIST (Version 2), 1990. ALCOM report 91-103.[3] R. Cori. Un code pour les graphes planaires et ses applications, volume 27 ofAst�erisque.Soci�et�e Math�ematique de France, 1975.[4] H. de Fraysseix, P. Ossona de Mendez, and P. Rosenstiehl. Bipolar orientations revis-ited. Discrete and Applied Mathematics, (to appear).[5] E. A. Dinic. Algorithm for solution of a problem of maximum 
ow in a network withpower estimation. Soviet Math. Dokl., 11:1277{1280, 1970.[6] S. Even and R. E. Tarjan. Network 
ow and testing graph connectivity. SIAM J.Comput., 4(4):507{518, 1975.[7] P. Rosenstiehl. Embedding in the plane with orientation constraints : The angle graph.In Proceedings of the Third International Conference (New York, 1985), pages 340{346.Annals of the New York Academy of Sciences, 1989. 555.[8] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and bipolar orientationsof planar graphs. Discrete and Computational Geometry, 1:343{353, 1986.[9] R. E. Tarjan. Data Structures and Network Algorithms. Society for Industrial andApplied Mathematics, 1983.[10] M. Veldhorst. A bibliography on network 
ow problems. Algorithms Review, 1(2):97{117, 1990. ALCOM.Convex and non-Convex Cost Functions�of Orthogonal RepresentationsGiuseppe Di Battista y Giuseppe Liotta z and Francesco Vargiu x�Work partially supported by Progetto Finalizzato Sistemi Informatici e Calcolo Parallelo of the Italian Na-tional Research Council (CNR) and by Esprit BRA of the EC Under Contract 7141 Alcom IIyDipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza", via Salaria 113, I-00198 Roma,Italia. dibattista@iasi.rm.cnr.itzDipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza", via Salaria 113, I-00198 Roma,Italia. Part of this work has been done when this author was visiting the Department of Computer Science ofMcGill University. liotta@infokit.ing.uniroma1.itxDipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza", via Salaria 113, I-00198 Roma,Italia and Database Informatica Spa. vargiu@infokit.ing.uniroma1.it44



An orthogonal drawing of a graph is a planar drawing such that all the edges are polygonalchains of horizontal and vertical segments. Finding the planar embedding of a planar graphsuch that its orthogonal drawing has the minimum number of bends is a fundamental openproblem in graph drawing. We provide the �rst partial solution to the problem. First, we givea new combinatorial characterization of orthogonal representations of 2-connected graphsbased on the concept of spirality and we relate the number of bends of representations to thespirality by means of the concept of cost function. Second we exploit the behaviour of costfunctions associated to orthogonal representations of components of 2-connected graphs.Third we use the characterization to �nd in polynomial time the planar embedding of aseries-parallel graph and of a 2-connected 3-planar graph such that its orthogonal drawinghas the minimum number of bends.In this talk we give a new combinatorial characterization of orthogonal representations of2-connected graphs and use the results to provide a �rst partial solution to the problem of�nding the planar embedding of a planar graph such that its of orthogonal drawing has theminimum number of bends.First, we introduce the new concept of spirality, that is a measure of how an orthogonaldrawing is \rolled up", giving a combinatorial characterization that relates the number ofbends of an orthogonal drawing and its spirality by means of the concept of cost function.Second we study the behaviour of cost functions of 2-connected graphs, with the followingresults:� Cost functions of components of 3-planar graphs are non decreasing convex piecewicelinear functions.� Cost functions of components of 4-planar graphs are piecewice linear functions, butpossibly concave (\w"-shape).Third, from the above results, we solve in polynomial time the problem of �nding the planarembedding that leads to the orthogonal drawing with the minimum number of bends for3-planar graphs and series-parallel graphs.Minimizing the number of bends of orthogonal representations is a classical problem ofgraph drawing.Tamassia [9] has proposed a very elegant representation algorithm that solves the prob-lem in polynomial time for graphs with a �xed embedding. The algorithm is based on acombinatorial characterization that allows to map the problem into a min-cost-
ow one.Linear time heuristics for the same problem have been proposed by Tamassia and Tollisin [12, 13]. Such heuristics guarantee at most 2n+ 4 bends for a biconnected graph with nvertices. Recently, Kant [7] has proposed e�cient heuristics with better bounds for tricon-nected 4-planar graphs and general 3-planar graphs (a graph is k-planar if it is planar andeach vertex has degree at most k). Tamassia, Tollis and Vitter [14] have given lower boundsfor the problem and the �rst parallel algorithm. A brief survey on orthogonal drawings isin [10].However, all the above papers work within a �xed embedding, where it can be seen thatthe choice of the embedding can deeply a�ect the results obtained by the algorithms. Theproblem of �nding the planar embedding that leads to the minimum number of bends isnot known to be NP-hard or not and has been explicitely mentioned as open by several45



authors. Although the problem is quite natural there are only a few contributions on thistopic, because of the exponential number of embeddings a planar graph (in general) has.Our technique exploits both the properties of the spirality and a variation of the SPQRtrees [2, 3]: a data structure that implicitely represents all the planar embeddings of aplanar graph. Moreover we adopt a slight modi�cation of the algorithm of Tamassia [9] forcomputing orthogonal representation of triconnected components.Observe that series-parallel graphs arise in a variety of problems such as scheduling, elec-trical networks, data-
ow analysis, database logic programs, and circuit layout. Also, theyplay a very special role in planarity problems [2, 3].References[1] P. Bertolazzi, R.F. Cohen, G. Di Battista, R. Tamassia, and I.G. Tollis, \How to Draw aSeries-Parallel Digraph," Proc. 3rd Scandinavian Workshop on Algorithm Theory, 1992.[2] G. Di Battista and R. Tamassia \Incremental Planarity Testing," Proc. 30th IEEE Symp. onFoundations of Computer Sciene, pp. 436-441, 1989.[3] G. Di Battista and R. Tamassia \On Line Planarity Testing," Technical Report CS-89-31,Dept. of Computer Science, Brown Univ. 1989.[4] P. Eades and R. Tamassia, \Algorithms for Automatic Graph Drawing: An Annotated Bib-liography," Technical Report CS-89-09, Dept. of Computer Science, Brown Univ. 1989.[5] S. Even \Graph Algoritms," Computer Science Press, Potomac, MD, 1979.[6] D. R. Fulkerson \An Out-of-Kilter Method for Minimal Cost Flow Problems," SIAM JournalAppl. Math. no. 9, pp. 18-27, 1961.[7] G. Kant \A New Method for Planar Graph Drawings on a Grid," Proc. IEEE Symp. onFoundations of Computer Science, 1992.[8] E. L. Lawler \Combinatorial Optimization: Networks and Matroids," Holt, Rinehart andWinston, New York, Chapt. 4, 1976.[9] R. Tamassia \On Embedding a Graph in the Grid with the Minimum Number of Bends,"SIAM J. Computing, vol. 16, no. 3, pp. 421-444, 1987.[10] R. Tamassia, \Planar Orthogonal Drawings of Graphs," Proc. IEEE Int. Symp. on Circuitsand Systems, 1990.[11] R. Tamassia, G. Di Battista, and C. Batini, \Automatic Graph Drawing and Readability ofDiagrams," IEEE Transactions on Systems, Man and Cybernetics, vol. SMC-18, no. 1, pp.61-79, 1988.[12] R. Tamassia and I.G. Tollis \E�cient Embedding of Planar Graphs in Linear Time," Proc.IEEE Int. Symp. on Circuits and Systems, Philadelphia, pp. 495-498, 1987.[13] R. Tamassia and I.G. Tollis \Planar Grid Embedding in Linear Time," IEEE Trans. onCircuits and Systems, vol. CAS-36, no. 9, pp. 1230-1234, 1989.[14] R. Tamassia, I. G. Tollis, and J. S. Vitter \Lower Bounds and Parallel Algorithms for PlanarOrthogonal Grid Drawings," Proc. IEEE Symp. on Parallel and Distributed Processing, 1991.[15] K. Takamizawa, T. Nishizeki, and N. Saito \Linear-Time Computability of CombinatorialProblems on Series-Parallel Graphs," Journal of the ACM, vol. 29, no. 3, pp. 623-641, 1982.[16] J. Valdes, R.E. Tarjan, and E.L. Lawler \The Recognition of Series Parallel Digraphs," SIAMJ. on Comp., No.11, 1982.[17] L. Valiant \Universality Considerations in VLSI Circuits," IEEE Trans. on Computers, vol.c-30, no. 2, pp. 135-140, 1981. 46



Topology and Geometry of Planar Triangular Graphs �Giuseppe Di Battista y and Luca Vismara zThe contribution of this talk is twofold. On one side, we give several topological results:(1) a new operation to construct plane triangular graphs from a triangle graph; (2) abasic lemma about the planarity of all the drawings of plane triangular graphs; (3) anew ordering for the vertices of plane triangular graphs. On the other side, we give acharacterization of all the planar drawings of a triangular graph by means of a system ofequations and inequalities relating its angles, solving a problem that is explicitely mentionedas open by several authors; we also discuss minimality properties of the characterization.The characterization can be used: (1) to decide in linear time whether a given distributionof angles between the edges of a planar triangular graph can result in a planar drawing;(2) to tackle the problem of maximizing the minimum angle of the drawing of a planartriangular graph by studying the solution-space of a non-linear optimization problem; (3)to give a characterization of the planar drawings of a triconnected graph through a systemof equations and inequalities relating its angles; (4) to give a characterization of Delaunaytriangulations through a system of equations and inequalities relating its angles; (5) to givea characterization of all the planar drawings of a triangular graph through a system ofequations and inequalities relating the length of its edges; in turn, this result allows to givea new characterization of the disc packing representations of planar triangular graphs.IntroductionPlanar straight-line drawings of planar graphs are a classical topic of the graph drawing�eld (surveys on graph drawing can be found in [18, 7]).A classical result established by Wagner, Fary, Stein, and Steinitz shows that every planargraph has a planar straight-line drawing [17, 22, 8, 16].A grid drawing is a drawing in which the vertices have integer coordinates. Independently,de Fraysseix, Pach, and Pollak [2, 3], and Schnyder [15] have shown that every n-vertexplanar graph has a planar straight-line grid drawing with O(n2) area.Straight-line drawings have also been studied with the constraint for all the faces to berepresented by convex polygons (convex drawings) [19, 20]. Tutte shows that, for a tricon-nected graph, convex drawings can be constructed by solving a system of linear equations.Recently, Kant has shown an algorithm to construct grid convex drawings with quadraticarea [11].In the research on planar straight-line drawings a very special role is played by anglesbetween the segments that compose the drawing. In particular, Vijayan [21] studied anglegraphs. An angle graph is a planar embedded graph in which the angles between successiveedges incident at vertices are given. The problem of the existence of a planar straight-line�Research supported in part by ESPRIT Basic Research Action No. 7141 (ALCOM II) by Progetto FinalizzatoSistemi Informatici e Calcolo Parallelo of the Italian National Research Council (CNR).yDipartimento di Informatica e Sistemistica, Universit�a di Roma \La Sapienza", Via Salaria, 113 - 00198Roma, Italy. dibattista@iasi.rm.cnr.itzResearch performed in part while this author was at IASI-CNR. Dipartimento di Informatica e Sistemistica,Universit�a di Roma \La Sapienza", Via Salaria, 113 - 00198 Roma, Italy. vismara@iasi.rm.cnr.it47



drawing of an angle graph that preserves the angles is tackled and partial characterizationresults are shown.In [9] the problem of constructing straight-line drawings of graphs with large angles isstudied. It is shown that it is always possible to construct a drawing whose smallest anglebetween the edges incident at a vertex is O(1=d2), where d is the maximum vertex degreeof the graph. Other results are given for particular classes of graphs. For planar graphs thebound is improved to O(1=d); however, in general, the obtained drawing is non-planar.Malitz and Papakostas [12] have shown that it is always possible to construct a planarstraight-line drawing of a planar graph whose smallest angle is O(�d), where 0 < � <1. The bound that is presented is only existential; in fact they exploits a disc packingrepresentation of the graph. In a disc packing representation (1) each vertex is a disc, (2) twovertices are adjacent in the graph if and only if their discs are tangent, and (3) the interiorsof the discs are pairwise disjoint. No polynomial algorithm is known to construct a discpacking representation. Recently, Mohar [13] has shown for this problem an approximationalgorithm.A fundamental tool for several algorithms and characterizations described above are planartriangular graphs. For instance the algorithm by de Fraysseix et al. and the algorithmby Schnyder have an intermediate step in which the given planar graph is triangulated.Also, planar triangular graphs play a very special role in a number of problems arisingin Computational Geometry. However, as far as we know, characterizing angles of planartriangular graphs has been an elusive goal for a long time. The contribution of this papercan be summarized as follows:� We de�ne a new operation, named close-wheel, such that any plane triangular graphG with n vertices can be constructed starting from the triangle graph by a sequenceof O(n) close-wheel operations.� We prove a lemma about the planarity of all the drawings of plane triangular graphs.� We de�ne a new ordering method for the vertices of plane triangular graphs.� We give a characterization of all the planar drawings of a triangular graph througha system of equations and inequalities relating its angles. The problem is explicitelymentioned as open by several authors (see e.g. [21, 1, 12]) We also discuss minimalityproperties of the characterization.The characterization above has several applications.� It can be used to decide in linear time whether a given distribution of angles betweenthe edges of a planar triangular graph can result in a planar drawing.� It allows to tackle the problem of maximizing the minimum angle of the drawing ofa planar triangular graph by studying the solution-space of a non-linear optimizationproblem.� It gives a characterization of the planar drawings of a triconnected graph through asystem of equations and inequalities relating its angles.� It gives a characterization of Delaunay triangulations through a system of equationsand inequalities relating its angles, solving a problem stated in [4]. Recently, the prob-lem of characterizing angles of Delaunay triangulations has been tackled by Dillencourtand Rivin who have shown that a system of equations and inequalities relating theangles of a plane triangular graph G can be used to decide whether G can be drawnas a Delaunay triangulation [6]. 48



� It can be exploited to give a characterization of all the planar drawings of a trian-gular graph through a system of equations and inequalities relating the length of itsedges; in turn, this result allows to give a new characterization of the disc packingrepresentations of planar triangular graphs.References[1] F.J. Brandenburg, P. Kleinschmidt, and U. Schnieders, \Drawing Planar Graphs withWide Angles," Manuscript, 1991.[2] H. de Fraysseix, J. Pach, and R. Pollack, \Small Sets Supporting Fary Embeddingsof Planar Graphs," Proc. 20th ACM Symp. on Theory of Computing, pp. 426-433,1988.[3] H. de Fraysseix, J. Pach, and R. Pollack, \How to Draw a Planar Graph on a Grid,"Combinatorica, vol. 10, pp. 41-51, 1990.[4] M.B. Dillencourt, \Graph-Theoretical Properties of Algorithms Involving DelaunayTriangulations," Tech. Rep. CS-TR-2059, University of Maryland, 1988.[5] M.B. Dillencourt, \Toughness and Delaunay Triangulations," Discrete & Computa-tional Geometry, vol. 5, no. 6, pp. 575-601, 1990.[6] M.B. Dillencourt and I. Rivin, Personal Communication, 1992.[7] P. Eades and R. Tamassia, \Algorithms for Automatic Graph Drawing: An Anno-tated Bibliography," Technical Report CS-89-09, Dept. of Computer Science, BrownUniv., 1989.[8] I. Fary, \On Straight Lines Representation of Planar Graphs," Acta Sci. Math.Szeged, vol. 11, pp. 229-233, 1948.[9] M. Formann, T. Hagerup, J. Haralambides, M. Kaufmann, F.T. Leighton, A. Simvo-nis, E. Welzl, and G. Woeginger, \Drawing Graphs in the Plane with High Resolu-tion,\ Proc. IEEE Symp. on Foundations of Computer Science, pp. 86-95, 1990.[10] C.D. Hodgson, I. Rivin, and W.D. Smith, \A Characterization of Convex HyperbolicPolyhedra and od Convex Polyhedra Inscribed in the Sphere," Bull. of the AmericanMathematical Society, vol. 27, no. 2, pp. 246-251, 1992.[11] G. Kant, \A New Method for Planar Graph Drawings on a Grid," Proc. IEEE Symp.on Foundations of Computer Science, 1992.[12] S. Malitz and A. Papakostas, \On the Angular Resolution of Planar Graphs," Proc.24th ACM Symp. on the Theory of Computing, pp. 527-538, 1992.[13] B. Mohar, \Circle packings of maps in polynomial time," Manuscript, submitted tothe Bull. of the American Mathematical Society.[14] T. Nishizeki and N. Chiba, Planar Graphs: Theory and Algorithms, Annals of Dis-crete Mathematics, North Holland, 1988.[15] W. Schnyder, \Embedding Planar Graphs on the Grid," Proc. ACM- SIAM Symp.on Discrete Algorithms, pp. 138-148, 1990.[16] S.K. Stein, \Convex Maps," Proc. Amer. Math. Soc., vol. 2, pp. 464-466, 1951.[17] E. Steinitz and H. Rademacher, Vorlesung uber die[18] R. Tamassia, G. Di Battista, and C. Batini, \Automatic Graph Drawing and Read-ability of Diagrams,\ IEEE Transactions on Systems, Man and Cybernetics, vol.SMC-18, no. 1, pp. 61-79, 1988. 49



[19] W.T. Tutte, \Convex Representations of Graphs," Proc. London Math Soc., vol. 10,pp. 304-320, 1960.[20] W.T. Tutte, \How to Draw a Graph," Proc. London Math Soc., vol. 3, no. 13, pp.743-768, 1963.[21] G. Vijayan, \Geometry of Planar Graphs with Angles," Proc. ACM Symp. on Com-putational Geometry, pp. 116-124, 1986.[22] K. Wagner, \Bemerkungen zum Vierfarbenproblem," Jber. Deutsch. Math.-Verein,vol. 46, pp. 26-32, 1936.An Optimal PRAM Algorithms for Planar ConvexEmbeddingFrank Dehne,� y Hristo Djidjev,z and J�org-R�udiger SackxIntroductionThe task of representing a diagram in understandable and readable form arises in a varietyof areas including, e.g., circuit design and information system analysis/design. The readeris referred to Eades and Tamassia [6] for an annotated bibliography of graph drawingalgorithms.The existence of a planar representation of a graph can be tested in linear time as was�rst proved by Hopcroft and Tarjan [1]. Chiba et al. [4] provided a linear time algorithmto �nd a planar representation of a planar graph. Their result is based on an algorithm todetermine the existence of a planar representation due to Booth and Lueker [2].A subclass of planar graphs whose representation is particularly aestetically pleasing arethose planar graphs whose bounded faces can all be drawn convexly, i.e. the embedding ofeach bounded face is a convex polygon. Thomassen [19] describes a sequential method forembedding a planar graph, once an extendible outer cycle F is given. An extendible outerfacial cycle F of G can be determined in linear time as described in [4, 14]. See also forother related work [K92, 20, 21].ResultsWe give an optimal parallel algorithm for determining whether a graph can be convexlyembedded and if so, for constructing such a convex embedding for the graph. The algorithmdeveloped runs in O(logn) time with O(n) space and the same processor bound as graphconnectivity.�This research was partially supported by Natural Sciences and Engineering Council of Canada.ySchool of Computer Science, Carleton University, Ottawa, Ontario K1S 5B6, Canada. dehne@scs.carleton.cazDepartment of Computer Science, Rice University, Houston, Texas 77251, USA.xSchool of Computer Science, Carleton University, Ottawa, Ontario K1S 5B6, Canada, sack@scs.carleton.ca50



Our solution to this problem is based on the following. Using [s,t]-numbers we present adecomposition scheme and develop a parallel algorithm to determine such a decomposition.To embed the paths so that each face of the original is convex we generalize the notion ofconvexity of polygons to pseudo-convexity. We give an algorithm to embed a path insidea pseudo-convex polygon so that the resulting subpolygons are also pseudo-convex. Whenapplying this embedding to the path decomposition, a convex embedding of the entire graphis obtained.We use the following parallel algorithms: planarity testing [15], st- numbering [12], list-ranking [5], lowest common ancestor in a tree [16], biconnectivity [18] (this algorithm is notoptimal as described, but with list-ranking algorithm it becomes optimal), triconnectivity[7], parallel transitive closure and point location in planar structures [17].References[1] O. Berkman, B. Schieber and U. Vishkin, Some doubly logarithmic optimal parallelalgorithms based on �nding all nearest smaller values, Technical Report UMIACS-TR-88-79, University of Maryland, 1988.[2] K. Booth, G. Lueker, Testing for the consecutive ones property, interval graphs, andgraph planarity using PQ-tree algorithm, J. Comp. Syst. Sci. 13, 1976, pp. 335-379.[3] N. Chiba, K. Onoguchi, T. Nishizeki, Drawing planar graphs nicely, Acta Informatica22, 1985, pp. 187-201.[4] N. Chiba, T. Yamanouchi, T. Nishizeki, Linear algorithms for convex drawings ofplanar graphs, in Progress in Graph Theory, J.A. Bondy and U.S.R. Murth (eds.),Academic Press, 1984, pp. 153-173.[5] R. Cole, U. Vishkin, Optimal parallel algorithms for expression tree evaluation and listranking, Proc. AWOC'88, Lecture Notes in Computer Science 319, Springer-Verlag,1988, pp. 91-100.[6] G. Di Battista, P. Eades, R. Tamassia, and I.G. Tollis Algorithms for drawing graphs:an annotated bibliography, Technical Report, Brown University, 1988; updated 1993.[7] D. Fussell, V. Ramachandran, R. Thurimella, Finding triconnected components by localreplacements, Proc. ICALP 89, LNCS 372, Springer-Verlag, 1989, pp. 379-393.[8] H. Gazit, Optimal EREW parallel algorithms for connectivity, ear decomposition andst-numbering of planar graphs, Proc. 5th Int. Parallel Processing Symp., 1991.[9] J. Hopcroft and R.E. Tarjan, E�cient plarnarity testing, J.ACM, 21:4, 1974, pp. 549-568.[10] G. Kant, Drawing Planar Graphs Using the lmc-Ordering, Proc. IEEE Symp. on Foun-dations of Computer Science, 1992, pp. 101-110.[11] A. Lempel, S. Even, I. Cederbaum, An algorithm for planarity testing of a graph,Theory of Graphs: International Symposium, Gordon and Breach, New York, 1967,pp. 215-232.[12] Y. Maon, B. Schieber, U. Vishkin, Parallel ear decomposition search (EDS) and st-numbering in graphs, TCS 47, 1986, pp. 277-296.[13] G. Miller, V. Ramachandran, A new graph triconnectivity algorithm and its paralleliza-tion, ACM Symp. on Theory of Computing, 1987, pp. 335-344.[14] T. Nishizeki, N. Chiba, Planar graphs: theory and algorithms, North Holland, 1988.51



[15] V. Ramachandran, J. Reif, An optimal parallel algorithm for graph planarity, Proc.30th Ann. IEEE Symp. on Found. of Comp. Sci., 1989, pp. 282-287.[16] B. Schieber, U. Vishkin, On �nding lowest common ancestors: simpli�cation and par-allelization, Proc. AWOC'88, LNCS 319, Springer-Verlag, 1988, pp. 111-123.[17] R. Tamassia and J. S. Vitter, Parallel transitive closure and point location in planarstructures, SIAM J. Comput. 20:4, pp. 708-725, 1991.[18] R.E. Tarjan, U.Vishkin, An e�cient parallel biconnectivity algorithm, SIAM J. Com-puting 14, 1984, pp. 862-874.[19] C. Thomassen, Planarity and duality of �nite and in�nite planar graphs, J. Combina-torial Theory, Series B 29, 1980, pp. 244-271.[20] W.T. Tutte, Convex Representations of Graphs, Proc. London Math Soc., vol. 10, 1960,pp. 304-320.[21] W.T. Tutte, How to Draw a Graph, Proc. London Math Soc., vol. 3, no. 13, 1963, pp.743-768.Algorithms for Embedding Graphs Into a 3-page BookMiki Shimabara Miyauchi �A book is a two-part object that consists of a spine, which is a line, and pages, each ofwhich is a half-plane bounded by the spine. A book embedding of a graph orders the nodesof the graph linearly along the the spine of a book and arranges each edge on pages sothat the edges do not intersect. Book embeddings have applications in several areas oftheoretical computer science, including VLSI design [1] and complexity theory [4]. In theDiogenes method for designing fault-tolerant VLSI processor arrays [4], for example, a bookembedding is used to implement the live processors of a multilayer chip (the processorsextended through all the layers). The single-row routing problem [6] is also considered tobe book embedding problem having two pages, and questions such as how to minimize thenumber of lines crossing the spine of the book and how to minimize the number of tracksof a graph have been investigated.The book-embedding problem has been studied for several kinds of graphs. When bookembeddings are restricted so that each edge is embedded on one page, for example, M. Yan-nakakis [8] showed that any planar graph can be embedded in a book of four pages andChung, Leighton, and Rosenberg [1] showed that the complete graph Kn is embeddable inn=2 pages. When each edge can be embedded in more than one page, Atneosen [1], Babai[7], and Bernhart [2] have each shown that every graph is embeddable in a 3-page book.Atneosen's proof, however, is nonconstructive. By using Leighton's lower bound on thecrossing number of a complete graph [5], we show the following:Theorem 1 Babai and Bernhart's algorithm that embeds Kn into a 3-page book takes
(n4) time.�NTT Basic Research Laboratories, 3-9-11, Midori-Cho, Musashino-Shi, Tokyo, 180 Japan. miki@ntt-20.ntt.jp52



We also present a new embedding algorithm for 3-page book embeddings of graphs.Theorem 2 There is an algorithm that embeds any graph into 3-page book and that runsin time O(mn) for a graph of size m and order n.Sketch of the proof. Let D be a half disk, with center c0, on the xy-plane and let C bethe boundary of D. Arrange the n nodes V = fvig on C counterclockwise.for each edge e = (vs; vi) (n � s > i > 0) 2 E doif s = i+ 1 or i = 1 then draw (vs; vi) as a straight line segment on Delse let ps be the middle point of the straight line segment (vs�1; vs)and pis be the point at which the straight line segment (ps; v1)crosses the auxiliary line c0vi. Join the pair of points fvs; pisg by a straightline segment on D, and join the pair of points fpis; vig by a half circlein a plane perpendicular to D.Let ci be the point at which the auxiliary line c0vi crosses the boundary of a small neigh-borhood of c0. The path v1; c1; c2; v2; v3; c3; : : : ; vn is considered as the spine L of thebook, D is considered two pages, and the third page is taken as the sharply bent surfacesperpendicular to D. The for statement repeats m(= jEj) times, and each inner for looprepeats at most n(= jV j) times.Theorem 3 Any algorithm embedding Kn into a 3-page book takes 
(n2) time.Theorem 4 Let Kn be a complete graph with n = 4s+1 (s 2 I, s � 1) nodes. Then thereis an embedding of Kn, into a 3-page book, with (n� 3)(5n2� 18n� 83)=48 edge-crossingsover the spine of the book.References[1] G. A. Atneosen: On the Embeddability of Compacta in N-Books, PH. D. Thesis,Michigan State Univ., 1968.[2] F. Bernhart: The Book Thickness of a Graph, J. Combi. Theory, Ser. B 27, pp. 320{331, 1979.[3] F. R. K. Chung, F. Thomson Leighton and A. L. Rosenberg: Embedding Graphs inBooks: A Layout Problem with Applications to VLSI Design, SIAM J. Alg. Disc. Math.Vol. 8, No. 1, 1987.[4] Z. Galil, R. Kannan, E. Szemeredi: \On non-trivial seperations for k-page graphs andsimulations by nondeterministic one-tape Turning machines," 18th ACM Symp. onTheory of Computing, pp. 39-49, 1986.[5] F. T. Leighton: \New Lower Bound Techniques for VLSI," Math. Systems Theory 17,pp. 47-70, 1984.[6] T. T. Trarng, M. Markek-Sadowska, and E. S. Kuh: An E�cient Single-Row RoutingAlgorithm, IEEE Tran. Computer-aided Design, Vol. CAD-3, No. 3, 1984.[7] A. T. White: Graphs, Groups and Surfaces, pp. 59. North-Holland, 1984.[8] M. Yannakakis: Embedding Planar Graphs in Four Pages, J. Computer and SystemSciences 38, pp. 36-67, 1989. 53



Dominance Drawings of Bipartite Graphs �Hossam ElGindy, y Michael Houle, yBill Lenhart, z Mirka Miller, y DavidRappaport, x and Sue Whitesides {A partial order P of a �nite set X is a transitive and non-re
exive binary relation onX . A partial order can be represented by a transitive digraph G on the elements of X .The dimension d(P ) of a partial order P is the minimum number of linear orders whoseintersection is P [3]. There is a direct interpretation of d(P ) as it pertains to its associatedgraph. We can use vectors x = (x1; x2; :::xk) to represent each vertex x of G, so that xi �yi; i = 1; 2; :::; k, (with strict inequality in at least one coordinate) if and only if y is reachablefrom x in G. Such an assignment of coordinates to vertices s called a dominance drawing,because all edges in the graph (and transitive closure) are geometrically characterized bythe dominance relation [6]. We use the notation d(G) to denote the dominance drawingdimension of the graph G.In [7] it is proved that deciding whether d(P ) � 3 is NP-complete. A characterizationin [3] of partial orders of dimension two or less leads to a polynomial time recognitionalgorithm. Thus, let G denote the complement of an undirected version of the transitivedigraph representing P . Then d(G) � 2 if and only if G is transitively orientable, that is,the edges of G can be oriented to obtain a transitive digraph. Transitive orientability canbe tested in O(�K) time, where � denotes the maximum vertex degree and K the numberof edges in the graph, [4] [5].We present an algorithm that obtains a two dimensional dominance drawing of a transitivebipartite graph whenever such a drawing exists. The running time of the algorithm isproportional to the size of the input and is thus optimal. This compares favourably withthe complexity of the algorithm in [4] [5]. Let G = (S; T; E) be a transitive bipartite graphwith S = (s1; s2; : : : ; sjSj) a set of sources, and T = (t1; t2; : : : ; tjT j) a set of sinks. We useN(s) = ft : (si; tj) 2 Eg to denote the neighbourhood of s. Let N = fN(s) : s 2 Sg, andletM = fN(s)�N(w) : s; w 2 S;N(w) � N(s)g, then I(S; T ) = N [M. Let �(I(S; T ))denote the collection of all permutations of T , �, such that members of each subset I 2I(S; T ) are contiguous in �. Our algorithm to obtain a two dimensional dominance drawingof the graph G is based on the following characterization of two dimensional transitivebipartite graphs.Theorem 1 The dimension of G = (S; T; E) is less than or equal to two if and only if�(I(S; T )) is not empty.�Part of the work was carried out when the authors were participants of the Workshop on Layout and OptimalPath Problems at Hawks Nest, Australia, sponsored by the Department of Computer Science, The University ofNewcastle, New South Wales, AustraliayDepartment of Computer Science The University of Newcastle, New South Wales, AUSTRALIA.zDepartment of Computer Science Williams College, Williamstown, USA.xDepartment of Computing and Information Science Queen's University, Kingston, Ontario, K7L 3N6,CANADA.{School of Computer Science McGill University Montreal, Quebec, CANADA.54



Consider a set X and a set of subsets of X , �. Booth and Leuker [2] present the so calledPQ-tree algorithms that can be used to determine the family of permutations of X so thatevery subset � 2 � is contiguous in the family of permutations. The resulting computationalcomplexity is linear in the size of the input. Thus it appears that an expedient solution toour problem is to compute the setM and subsequently the set I(S; T ) and apply the PQ-tree algorithm. However, the size ofMmay be O(jSj2). This problem is not insurmountableas we can restrict our attention to a linear sized subset ofM. Consider the case where wehave a maximal sequence N(s1) � N(s2) � � � � � N(sk), then we only need to consider theset N(sk) �N(s1). However, the task of computing this reduced subset ofM approachesthe conceptual di�culty of presenting a new approach without using PQ-trees. We presenta new algorithm and skirt the problem of computing a reduced subset of M. The datastructure we use to represent the family of permutations �(I(S; T )) is in
uenced by thePQ-tree, but it is specially tailored for this problem and is much simpler.We de�ne a boxlist of a set T , B(T ), as the empty list, or a linked list consisting of oneor more boxes, where each box contains a subset of T , and the boxes form an exact coverof T , that is, the union of the boxes in the boxlist is T and each element of T appearsin exactly one box. If we �x intra-box ordering of elements then a rear to front, or frontto rear, traversal of B(T ) corresponds to a permutation of T . A permutation � of T isconsistent with B(T ) if the elements within boxes can be ordered so that a traversal ofB(T ) is equal to �. Let F (B(T )) be used to denote the set of all permutations that areconsistent with B(T ). Given a graph G = (S; T; E) our algorithm begins with a boxlistrepresenting all permutations of T , that is, the boxlist consists of exactly one box thatcontains T itself. If the graph has a two dimensional dominance drawing then the algorithmexits with a non-empty boxlist such that F (B(T )) = �(I(S; T )) otherwise the algorithmexits with B(T ) = ;, an empty list.The principle operation performed on a boxlist is to add constraints to B(T ) that areassociated with a neighbourhood of a source, N(s). The constraints are substrings, orintervals within the permutations of �(I(S; T )). Thus B(T ) is constrained so that theinterval associated with N(s) will be contiguous in all permutations of F (B(T )). We showthat the adding of constraints can be scheduled so that it is easy to check whether aninterval is contiguous within B(T ), and that N(s)�N(w) is contiguous for all w such thatN(w) � N(s). We maintain an overall linear complexity by avoiding explicit sorting.Our algorithm development is summarized in the following theorem.Theorem 2 Given a connected transitive bipartite graph G = (S; T; E), our algorithmreturns F (B(T )) = �(I(S; T )). The algorithm can be implemented to run in O(jSj+ jT j+jEj) time and space, and this is within a constant multiple of optimal.References[1] G. Di Battista, W.-P. Liu, and I. Rival, Bipartite Graphs, Upward Drawings, andPlanarity, Information Processing Letters, vol. 36 (1990) pp. 317-322.[2] K. Booth and G. Leuker, Testing for the consecutive ones property, interval graphs,and graph planarity using PQ-tree algorithms J. Comput. and Sys. Sci., 13 (1976)pp. 335-379.[3] B. Dushnik and E. W. Miller, Partially ordered sets, Amer. J. Math., 63 (1941) pp.600-610. 55



[4] M. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press(1980).[5] A. Pnueli, A Lempel, and S. Even, Transitive orientation of graphs and identi�cationof permutation graphs, Canad. J. Math., 23 (1971) pp. 160-175.[6] R. Tamassia, Drawing algorithms for planar st-graphs Australasian Journal of Com-binatorics, vol. 2 (1990).[7] M. Yannakakis, The complexity of the partial order dimension problem, SIAM J.Alg. and Disc. Meth., Vol. 3, No. 3 (1982) pp. 351-358.Computing the Overlay of Regular Planar Subdivisions inLinear TimeUlrich Finke and Klaus Hinrichs�A planar subdivision is the embedding of a planar graph in the plane and thereforedetermines a partitioning of the plane [4]. It is an open problem, whether the overlay of twosimply connected subdivisions can be processed in linear time and space [1]. A �rst step tosolve this problem is the overlay algorithm for convex subdivisions which has the desiredcomplexity [3]. Generalizations of this result are of theoretical and practical importance.We propose an topological sweepline algorithm which solves the problem of overlayingregular subdivisions in linear time and space. A regular subdivision is simply connected,the embedding of each edge curve must be a function in x, and each vertex v of the planargraph has at least one incoming edge from the left and one outgoing edge to the right.The sweepline in our algorithm divides the overlay subdivision into two parts. The leftpart is the correctly processed overlay and the right part contains the unprocessed elementsof the subdivisions. All edges between the left and right part intersect the topologicalsweepline. The basic idea of our algorithm is to handle only those edges that represent theseams between the subdivisions on the sweepline. By performing local sweepline transactionsthe algorithm sews up the subdivisions to generate the overlay result. The locality of thetransactions makes it possible to parallelize the algorithm easily.Algorithms for computing the overlay of planar subdivision are of great practical importancein geographic information systems and computational geometry [2, 5].References[1] B. Chazelle: Computational Geometry for the Gourmet - Old Fare and New Dishes,ICALP, 1991, 686 - 696.[2] A. U. Frank: Overlay Processing in Spatial Information Systems, Proc. 8th Int. Sym-posium on Computer-Assisted Cartography (AUTO-CARTO 8), 1987, 16-31.�FB 15, Informatik, Westf�alische Wilhelms-Universit�at Einsteinstr. 62, D - 48149 M�unster, Germany�nke,hinrichs@math.uni-muenster.de 56



[3] L. J. Guibas, R. Seidel: Computing Convolutions by Reciprocal Search, 2nd ACMSymposium on Computational Geometry, 1986, 90 - 99.[4] F. P. Preparata, M. I. Shamos: Computational Geometry - An Introduction. Springer-Verlag, New York, 1985.[5] C. D. Tomlin: Geographic Information Systems and Cartographic Modeling, PrenticeHall, Englewood Cli�s, NJ, 1990.Generation of Random Planar MapsAlain Denise �Methods of random generation are useful tools to study some properties of combinatorialstructures. As regards graphs, such methods are e�cient to verify or formulate conjectures,especially when the exhaustive generation of all the graphs which are to be studied wouldbe unreasonable. These methods also allow to evaluate the performances of algorithms onsuch structures. Moreover, to increase one's own knowledge on some class of graphs, itis useful to be able to generate and to display these con�gurations. Thus, procedures ofrandom generation are included in softwares of manipulation of graphs, which are used forresearch and teaching of graph theory and discrete mathematics [3]. The uniform generationof random graphs has been well studied for a few years, and e�cient algorithms exist forsome particular classes. See for exemple works of Tinhofer [7], Dixon and Wilf [5], Wormald[8], Jerrum and Sinclair [6].The matter of our work is the uniform generation of random rooted planar maps with nedges. A planar map is the projection of a planar connected graph on a plane surface. A mapis rooted if a vertex and an edge adjacent to it are distinguished. By using the encodingof planar maps due to Cori and Vauquelin [4], we reduce the problem to a problem ofgeneration of words of a language close to the language of parenthesis systems. Then weuse a rejection algorithm inspired by the methods of Barcucci, Pinzani and Sprugnoli [1, 2],in order to generate these words. We prove that the average complexity is O(n2), and weconjecture that it is O(npn).References[1] E. Barcucci, R. Pinzani, and R. Sprugnoli. G�en�eration al�eatoire des animaux dirig�es. InJ. G. Penaud J. Labelle, editor, Actes de l'Atelier Franco-Qu�eb�ecois de Combinatoire,publi LaCIM 10. Universit�e du Qu�ebec �a Montr�eal, 1991.[2] E. Barcucci, R. Pinzani, and R. Sprugnoli. G�en�eration al�eatoire de chemins sous-diagonaux. In C. Reutenauer P. Leroux, editor, Actes du 4�eme Colloque S�eries Formelleset Combinatoire Alg�ebrique, publi LaCIM 11. Universit�e du Qu�ebec �a Montr�eal, 1992.[3] O. Baudon. Cabri-graphes, un cahier de brouillon interactif pour la th�eorie des graphes.PhD thesis, Universit�e Joseph Fourier, Grenoble, 1990.�LaBRI, Universit�e Bordeaux I, 33405 Talence Cedex, France. denise@labri.u-bordeaux.fr57



[4] R. Cori and B. Vauquelin. Planar maps are well labeled trees. Can. J. Math., 33(5):1023{1042, 1981.[5] H. S. Wilf and J. D. Dixon. The random selection of unlabeled graphs. J. Algorithms,4:205{213, 1983.[6] M. Jerrum and A. Sinclair. Fast uniform generation of regular graphs. TCS, 73:91{100,1990.[7] G. Tinhofer. On the use of almost sure graph properties. Lecture Notes in ComputerScience, 100, 1980.[8] N. C. Wormald. Generating random regular graphs. J. Algorithms, 5:247{280, 1984.Symmetric Drawings of GraphsJoseph Manning�IntroductionPerhaps one of the most important criteria for producing visually-informative drawings ofabstract graphs is the display of axial and/or rotational symmetry, collectively known asgeometric symmetry. Its importance stems from the fact that, given a symmetric drawing,an understanding of the entire graph can be built up from that of a smaller subgraph,replicated a number of times. This paper reviews several results on the de�nition, detection,and display of geometric symmetry.Geometric symmetry in graphs may be de�ned by using either a geometric or an algebraicformulation. Geometrically, a graph is said to possess a particular symmetry if there existssome drawing of the graph which displays that symmetry. Note, however, that geometricsymmetry is an inherent property of the abstract graph itself, rather than of any individualdrawing. Algebraically, a geometric symmetry may be de�ned as an automorphism of thegraph which satis�es certain conditions. Both de�nitions are equivalent. While all of theresults below were obtained from the geometric de�nition, it appears that the algebraicde�nition may hold the greatest promise in attempting to expand these results to broaderclasses of graphs.The fundamental problem of determining if a general abstract graph possesses any geometricsymmetry, along with several variations, are allNP-complete [5, 6]. Accordingly, the currentresearch has focused on symmetry in planar graphs, since these constitute an importantsubclass of general graphs and frequently admit e�cient solutions to otherwise intractableproblems.�Vassar College, U.S.A. manning@cs.vassar.edu 58



AlgorithmsOptimal, linear-time algorithms, outlined below, have been developed for detecting anddisplaying both axial and rotational symmetries in the following classes of (planar) graphs:� Trees [3, 6]: A tree (\free tree") is a connected acyclic graph. All symmetries of atree must keep its center �xed. (A center of a tree is any vertex whose maximumdistance from any leaf is minimized; every tree has either one center, or two adjacentcenters; the latter case may be reduced to the former by introducing a new vertexon the edge joining the two centers.) Removing the center from a tree divides theremainder of the tree into a number of subtrees, and any symmetry of the overalltree must permute these among themselves, mapping subtrees to isomorphic subtrees.Using a variation of the linear-time tree-isomorphism test [1, Mp84], these subtreesare partitioned into isomorphism classes, from which the geometric symmetries aresubsequently determined. A radial drawing of the tree, which displays these symme-tries, is then constructed. Since it is impossible, in general, to display all of its axialsymmetries in a single drawing of a given tree, the algorithm instead determines themaximum number of simultaneously-displayable axial symmetries, and constructs thecorresponding \most symmetric" drawing.� Outerplanar Graphs [4, 6]: An outerplanar graph is one which can be drawn in theplane with no edge crossings and with all vertices on the outer face. Every biconnectedouterplanar graph has a unique Hamilton cycle, which may be found in linear time.By traversing its Hamilton cycle, the graph is transformed into a string, in such away that geometric symmetries of the graph correspond to certain \symmetries" ofthe string. These, in turn, are found using an e�cient pattern-matching algorithm[2], from which the symmetries of the graph are then recovered. By contrast withthe situation for trees, all geometric symmetries of a biconnected outerplanar graphmay be displayed in a single drawing, which the algorithm then constructs. For non-biconnected outerplanar graphs, geometric symmetries are enumerated by using acombination of the above algorithm, applied to the biconnected components, with thealgorithm for trees, applied to the block-cutvertex tree, while a similar combination ofdrawing techniques is used to construct symmetric drawings.� Plane Embeddings of Planar Graphs [6]: A planar graph is one which can be drawnin the plane with no edge crossings, and a plane embedding merely lists the orderof edges emanating from each vertex, without specifying either the coordinates ofthe vertices or the shapes of the edges. A planar graph, with such an embedding, is�rst transformed into a number of \concentric" biconnected outerplanar levels, andthe geometric symmetries of these levels are then found using the previous algorithmand \intersected" to give the symmetries of the original graph. This algorithm hasparticular relevance to drawing triconnected planar graphs, whose plane embeddingsare unique up to the choice of outer face.Many of the algorithms have been implemented, and test runs have shown that their optimaltheoretical time complexities do indeed translate into fast practical algorithms. Running ona mid-range workstation, a graph with up to one hundred vertices can be processed almostinstantaneously. 59



ExtensionsPerhaps the most important challenge lies in extending these results to the entire class ofplanar graphs. An easier extension might be to series-parallel graphs, which form anotherproper subclass of planar graphs.The incidence of geometric symmetry in graphs appears to decrease as the size of the graphincreases. For example, while 58% of 10-vertex trees have at least one axial symmetry, only16% of 15-vertex trees do. It appears useful to relax the requirement of strict symmetryand instead investigate using \near-symmetry" as a drawing criterion. An even more far-reaching generalization would be to explore the construction of (straight-edge) drawings inwhich the number of distinct edge lengths is minimized.References[1] A. Aho, J. Hopcroft, J. Ullman. \The Design and Analysis of Computer Algorithms".Addison-Wesley, 1974.[2] D. Knuth, J. Morris, V. Pratt. \Fast Pattern Matching in Strings". SIAM Journal onComputing 6 (2):323{350, Jun 1977.[3] J. Manning, M. Atallah. \Fast Detection and Display of Symmetry in Trees". CongressusNumerantium 64 :159{169, Nov 1988. Also available as Technical Report CSD-TR-562,Department of Computer Sciences, Purdue University, Dec 1985.[4] J. Manning, M. Atallah. \Fast Detection and Display of Symmetry in OuterplanarGraphs". Discrete Applied Mathematics 39 (1):13{35, Aug 1992. Also available as Tech-nical Report CSD-TR-964, Department of Computer Sciences, Purdue University, Mar1990.[5] J. Manning. \Computational Complexity of Geometric Symmetry Detection in Graphs".Lecture Notes in Computer Science 507 :1{7, Springer-Verlag, Jun 1991. Also available asTechnical Report CSC-90-1, Department of Computer Science, University of Missouri{Rolla, Jan 1990.[6] J. Manning. \Geometric Symmetry in Graphs". Ph.D. Thesis, Department of ComputerSciences, Purdue University, Dec 1990.Recognizing Symmetric GraphsToma�z Pisanski�Usually we can deal with graphs if they are small and we are able to grasp their pictorialrepresentation. If a graph is stored and the information of its construction is lost the problemis how to recognize the graph: how to �nd its optimal or near-optimal construction. For ahuman the drawing of a graph may represent a way of recognizing the graph.�IMFM, Department of Theoretical Computer Science, University of Ljubljana, Jadranska 19, 61111 Ljubljana,Slovenia. tomaz.pisanski@uni-lj.si 60



We implemented a series of algorithms for automatic drawing of graphs. The �rst methoduses the idea of spring embedding by P. Eades [Ead84] that comes in several variants.Graduate student Danica Dolni�car wrote a Pascal program that compares the algorithm ofKamada and Kawai [KK89] to the method of Fruchterman and Reingold [FR91].In the second one we experimented with eigenvectors. We noticed that the 2nd, 3rd and4th eigenvector can be used as the three coordinates for the vertices in the 3-dimensionalspace. Later we obtained some theoretical results that will be presented in a joint paperwith John Shawe-Taylor.For vertex transitive graphs we tried to use a combination in order to produce good resultsfor large graphs. First we calculate the automorphisms of graph. We use B. McKay's Nautyto do the job. Then we select an automorphism � that has the smallest number of orbits.We contract the vertices in each orbit of � and thus obtain the factor graph. Then the factorgraph is drawn using an automatic drawing algorithm. Finally the orbits are blown out sothat the vertices are put on the cycles in the order speci�ed by the permutation �. Forinstance, the Coxeter graph on 28 vertices that is otherwise hard to recognize is drawn inthe familiar Y shape. If all the orbits are of the same size, say k, another drawing approachmay be taken. The vertices of the k copies of the factor graph are placed on a circle in orderto display rotational symmetry. Then the edges of the original graph are drawn as straightlines. The idea of displaying symmetry in graph drawing is certainly not new. The readeris referred to [2], [1], [6], and [7] for further information about the research on this topic.It should be noted that computation-intensive algorithms are being programmed by studentsand researchers at IMFM in computer languages such as Pascal and C, however they areall bundled in a Mathematica [Wat89] package called Vega. The whole system will becomeavailable for non-pro�t use in 1994.References[1] M. J. Atallah and J. Manning, \Fast Detection and Display of Symmetry in EmbeddedPlanar Graphs,", Manuscript, Purdue Univ., 1988.[2] G. Di Battista, P. Eades, R. Tamassia, I. G. Tollis, \Algorithms for Drawing Graphs:an Annotated Bibliography", Preprint June 1993.[3] P. Eades, \A Heuristic for Graph Drawing," Congressus Numerantium, vol. 42, pp.149-160, 1984.[4] T.M.J. Fruchterman and E.M. Reingold, \Graph Drawing by Force-directed Place-ment," Software-Practice and Experience , vol. 21 pp. 1129-1164, 1991.[5] T. Kamada and S. Kawai, \An Algorithm for Drawing General Undirected Graphs",Information Processing Letters, vol. 31, pp. 7-15, 1989.[6] J. Manning and M. J. Atallah, \Fast Detection and Display of Symmetry in Trees,"Congressus Numerantium, vol. 64, pp. 159-169, 1988.[7] J. Manning and M. J. Atallah, \Fast Detection and Display of Symmetry in OuterplanarGraphs," Technical Report CSD-TR-606, Dept. of Computer Science, Purdue Univ.,West Lafayette, IN, 1986.[8] S. Wolfram, \Mathematica," Addison-Wesley, Redwood City, CA, 1991.61



Algorithmic and Declarative Approaches to AestheticLayoutPeter Eades and Tao Lin�Aesthetics for graph layout can be divided into three categories:� Global criteria, such as minimizing the number of edge crossings, or maximizing sym-metry.� Correctness criteria, such as placing the employer above the employees in an organi-zation tree drawing.� Preferred criteria, which express the preferences of a speci�c user at a speci�c time.These criteria may include placing a particular node in the centre of the page, or usinga particular aspect ration.We can divide implementations of layout functions into two general categories: those withan algorithmic approach and those with a declarative approach.The algorithmic approach is well documented in the survey [2]. This approach concen-trates on achieving global criteria. Typically, the approach ignores the semantic or syntacticmeaning of a speci�c diagram and only uses graph theoretic structure.In a layout algorithm, the aesthetics are hard coded into the implementation of the function.It is not easy to change the requirements for a layout algorithm at run time. Such layoutalgorithms are not 
exible, cannot cope with preferred criteria, and normally can only copewith a few �xed correctness criteria.A declarative layout function handles the layout according to a 
exible set of require-ments speci�ed by end-users or interface designers, even at run time. A system which usesdeclarative layout creation function has two components: an editor through which user canspecify aesthetics and a mechanism for creating the layout. The aesthetics may be presentedas constraints, rules, or parameters for a cost function. There are several mechanisms usedin the declarative approach, such as constraint solvers, genetic systems, rule based systems,and simulated annealing.The expressive power of constraints and rules ensure that a wide variety of requirementscan be speci�ed; thus the declarative approach maximizes 
exibility.However, the declarative approach has signi�cant problems. It is di�cult to choose the rulesor constraints (it is di�cult to foresee the e�ects of a constraint or rule, even in a moderatelysized system). Implementations of declarative functions are very slow, and sometimes (dueto their heuristic nature) do not achieve their aim, even there is a layout which satis�esrelevant requirements. In particular, the declarative approach has some di�culty handlingglobal aesthetics.We conclude that neither algorithmic nor declarative approaches are suitable for sole adop-tion in graphic user interfaces. However, by integrating the approaches, one can use theadvantages of one to compensate the disadvantages of the other.If a layout algorithm is built on top of a declarative system, the integrated system seems veryslow [3]. Declarative techniques are used successfully on top of algorithms in [TBB88, 1];�Department of Computer Science, University of Newcastle, Newcastle, Australia. eades@cs.newcastle.edu.au.frank@cs.newcastle.edu.au. 62



however, in these cases the declarative techniques are tightly bound to the algorithms. Webelieve that an e�ective approach is to loosely tie some declarative functions on top of alayout algorithm. Brie
y, this may be achieved by exploiting the nondeterminism in layoutalgorithms.The integrated system may be used as follows:� The interface modeler creates a generic toolbox of layout algorithms covering a widerange of global aesthetics. The algorithms leave points of nondeterminism to be ex-ploited by constraints.� The interface designer chooses a speci�c set of algorithms for a speci�c application. Thealgorithms are customized by specifying constraints so that they satisfy the correctnesscriteria of the application.� The end user speci�es further constraints to achieve preferred criteria.This approach satis�es the same set of the global criteria as the underlying layout algo-rithm. However, the integrated approach is su�ciently 
exible to support a broad range ofcorrectness and preferred criteria.We give examples of this approach using tree drawings.References[1] Karl-Friedrich B�ohringer and Frances Newbery Paulisch. Using constraints to achievestability in automatic graph layout algorithms. In Proceedings of ACM/SIGCHI, pages43{51, 1990.[2] P. Eades and R. Tamassia. Algorithms for drawing graphs: an annotated bibliography.Technical report, Department of Computer Science, Brown University, 1989. Acceptedto the Networks.[3] E.B. Messinger. Automatic Layout of Large Directed Graphs. PhD dissertation, De-partment of Computer Science, University of Washington, 1988. Published as TechnicalReport No. 88-07-08.[4] Roberto Tamassia, Giuseppe Di Battista, and Carlo Batini. Automatic graph drawingand readability of diagrams. IEEE Transactions on Systems, Man and Cybernetics,18(1):61{79, January/February 1988.
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A Visual Approach to Graph Drawing �Isabel F. Cruz,y Roberto Tamassia,y and Pascal Van HentenryckyThis abstract describes research in progress on a new technique for the visual speci�cationof constraints in graph drawing systems.Work in graph drawing has traditionally focused on algorithmic approaches, where thelayout of the graph is generated according to a prespeci�ed set of general rules or aestheticcriteria (such as planarity or area minimization) that are embodied in an algorithm. Perhapsthe most sophisticated graph drawing system based on the algorithmic approach is the onedeveloped by Di Battista et al. [BBL92], which maintains a large database of graph drawingalgorithms and is able to select the one best suited to the needs of the user.The algorithmic approach is computationally e�cient, however, it does not naturally sup-port constraints , i.e., requirements that the user may want to impose on the drawing of aspeci�c graph (e.g., clustering or aligning a given set of vertices). Previous work by Tamassiaet al. [TBB88] has shown the importance of satisfying constraints in graph drawing sys-tems, and has demonstrated that a limited constraint satisfaction capability can be addedto an existing drawing algorithm. Recently, several attempts have been made at developinglanguages for the speci�cation of constraints and at devising techniques for graph drawingbased on the resolution of systems of constraints [Kam89, Mar91, HM90].Current constraint-based systems have three major drawbacks:� The speci�cation of constraints is made through a detailed enumeration of facts froma �xed set of predicates, expressed in Prolog [Kam89] or with a set-theoretic notation[Mar91].� Natural requirements, such as planarity, need complicated constraints to be expressed.� General constraint-solving systems are computationally ine�cient [HM90].The above discussion indicates the need for a language to specify constraints that reconcilesexpressiveness with e�ciency.We believe that visual languages could provide a natural and user-friendly way to expressthe layout of a graph. For this purpose, we plan to design a variation of doodle, a visuallanguage for the speci�cation of the display of facts in an object-oriented database [Cru92,Cru93]. We envision the following goals, which di�erentiate our work from [Mar91] and[Kam89]:� Visual speci�cation of layout constraints: the user should not have to type a long listof textual speci�cations.� Extensibility: the user should not be limited to a prespeci�ed set of primitives.� Flexibility: the user should not have to give precise geometric speci�cations, such asexact coordinates or precise geometric relations.�Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. ArmyResearch O�ce under grant DAAL03-91-G-0035, and by the O�ce of Naval Research and the Advanced ResearchProjects Agency under contract N00014-91-J-4052, ARPA order 8225.yDepartment of Computer Science, Brown University, Providence, RI 02912-1910. fifc,rt,pvhg@cs.brown.edu64



In addition to constraints, the visual language should also be able to express aestheticcriteria associated with optimization problems (e.g., crossing or area minimization) and toidentify general drawing standards (e.g., layered drawing or upward drawing). Recent workby Eades and Lin [EL93] has similar objectives, but is not based on a visual speci�cation.For e�ciency reasons, we envision using our visual language within a graph drawing sys-tem similar to Diagram Server [BGST90]. A crucial component of this system is a com-piler that translates the visual speci�cations into a drawing algorithm synthesised from adatabase of drawing algorithms. The algorithms database will contain both polynomial- andexponential-time algorithms. The main purpose of the drawing compiler is to deduce fromthe speci�cations a combination of algorithms that solves the layout problem as e�cientlyas possible. The work in [BBL92] is particularly interesting in this context.References[BBL92] P. Bertolazzi, G. Di Battista, and G. Liotta. Parametric Graph Drawing. Tech-nical Report 6/67, Consiglio Nazionale delle Ricerche, Rome, Italy, July 1992.[BGST90] G. Di Battista, A. Giammarco, G. Santucci, and R. Tamassia. The Architectureof Diagram Server. In Proc. of IEEE Workshop on Visual Languages, 1990.[Cru92] Isabel F. Cruz. DOODLE: A Visual Language for Object-Oriented Databases.In ACM-SIGMOD Intl. Conf. on Management of Data, pages 71{80, 1992.[Cru93] Isabel F. Cruz. Using a Visual Constraint Language for Data Display Speci�ca-tion. In Paris Kanellakis, Jean-Louis Lassez, and Vijay Saraswat, editors, FirstWorkshop on Principles and Practice of Constraint Programming, 1993.[EL93] Peter Eades and Tao Lin. Algorithmic and Declarative Approaches to AestheticLayout. In Proc. of Graph Drawing '93, 1993.[HM90] Richard Helm and Kim Marriott. Declarative Speci�cation of Visual Languages.In Proc. IEEE Workshop on Visual Languages, 1990.[Kam89] Tomihisa Kamada. Visualizing Abstract Objects and Relations { A Constraint-Based Approach. World Scienti�c, Singapore, 1989.[Mar91] Joe Marks. A Formal Speci�cation for Network Diagrams That Facilitates Au-tomated Design. Journal of Visual Languages and Computing, 2:395{414, 1991.[TBB88] R. Tamassia, G. Di Battista, and C. Batini. Automatic Graph Drawing andReadability of Diagrams. IEEE Transactions on Systems, Man and Cybernetics,SMC-18(1):10{21, 1988.
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Layout of Trees with Attribute Graph GrammarsGaby Zin�meister �Graph grammars are a formalism for syntactically describing classes of graphs. Their pro-duction rules are used for graph rewriting to implement graph manipulations. There are avariety of application areas ranging from software development environments and compilerconstruction over pattern recognition and development of biological cell layers to speci�ca-tion of concurrent systems.The central idea of our approach to layout graphs is viewing layout algorithms as attributeevaluators of attribute graph grammars, thus a layout algorithm is an attribute scheme plusan attribute evaluator. The main advantage is that di�erent layouts can be speci�ed simplywith di�erent attribute schemes.We have modelled three widely used tree layout algorithms ([6, 7, 9]) with attribute graphgrammars (AGG). A graph grammar (GG) for arbitrary trees is described. The three di�er-ent layout algorithms are speci�ed by di�erent attribute schemes of the same grammar. Weillustrate our approach with the Moen algorithm [6]. All three algorithms will be presentedin the full paper.Attribute Graph Grammars (AGG)GGs are a generalization of string grammars which are well known from formal languagetheory. Kreowski and Rozenberg give an excellent survey of graph grammars [4, 5]. Forour purposes we use so called context free node label controlled GGs (CFNLC) [2]. Theproductions of such a GG consist of one nonterminal node as the left-hand side of the rule,a graph over nonterminal and terminal nodes as the right-hand side and an embeddingspeci�cation. A derivation step consists of choosing one occurrence of the left-hand sidenonterminal A in the host graph H (which is the analogue of a sentential form), removingthat instance, adding the right-hand side graph R and connecting the remainder of H to Rfollowing the embedding speci�cation. The embedding speci�cation describes which nodesof the neighbourhood of the instance of A in H are to be connected with which nodes ofR. Thus edges may be deleted or added or their orientation may be inverted. The languageproduced by a GG is an (in�nite) set of graphs.The AGG approach used in this paper is a generalization of Knuth's attribute (string)grammars. Synthesized or inherited attributes are associated to nodes and attribute eval-uation rules to the GG productions. Attribute evaluators may be constructed analogously(see [8]).For special GGs e�cient (polynomial time) parsers can be constructed [3] andattribute evalutor generators have been implemented [8].The GG for Arbitrary TreesThe GG for trees is de�ned as follows:Let T = (�N = fF; Sg;�T = ftg;�E = fxg; P; S = F ) with the productions as in �g. 1.�Wilhelm-Schickard-Institut, Sand 13, D-72076 T�ubingen. zinssmei@informatik.uni-tuebingen.de66
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��SppppppppFigure 1: Productions P of TS nodes are the 'generic' nodes with which we can add an arbitrary number of children toa treenode, whereas F nodes represent a fully derived subtree.The upper nonterminal nodes are the left hand sides, the lower graphs with terminal andnonterminal nodes and solid edges are the right hand sides of the productions. The dottedlines indicate the replacement step. The mark fF; S; tg : xin ! xin means that x-labellededges from F-, S- and t-nodes to the left hand side node, are replaced by x-labelled edgesfrom the same sources to the right hand side node speci�ed by the dotted line (xout denotesthe reverse orientation of edges.) The empty set fg at a dotted line denotes that the targetnode is not connected to the host graph.The terminal alphabet can obviously be extended, but is reduced to one node type forsimplicity. There is only one edge label, so we can think about the terminal tree as one withunlabelled edges.The Moen Algorithm as AGGThe main idea in attributing is to push information about subtree contours from bottomto top in the derivation tree (synthesized attributes), joining subtrees in the S-nodes andadjusting the root over the subtrees in the F -nodes. The relative position of a node toits sibling is calculated in this pass too. Afterwards in a second pass the missing relativepositions of the �rst child of each subtree are pushed downwards in the derivation tree(inherited attributes). Absolute coordinates may be assigned to nodes in this second passas well, but are omitted here for simplicity. Figure 6 lists the attributes and �gure 6 showsthe complete attribution. The functions written in italic are taken from the original Moenalgorithm, except for di�erent use of reference parameters and global values. The attributesare evaluable with a two pass left to right evaluation on the derivation tree.ConclusionThe only other approach we know to drawing graphs using graph grammars is publishedby Brandenburg [1]. He augments graph grammar productions by placement rules in formof left-of, above-of constraints between rhs-nodes, a bounding box around the rhs andsome connection points on that bounding box. This is well suited for graphs where replacinga (nonterminal) node results pushing the rest of the graph in x- and y- dimension to getspace for the rhs-nodes at the (relative) old place of the lhs-node. Such graphs are forexample syntax diagrams or series parallel graphs. But with the tree graph grammar aboveconstraints in the sense Brandenburg will not lead to a reasonable layouts, because it is not67



Attributes Symbol Type Explanationrootdims (syn) F; S integers width, height and border of the root nodecontour (syn) F polyline contour around the tree derived from Fcontoursubtrees (syn) S polyline contour around the subtrees derived from Slastsubtreeheight (syn) S integer height incl. border of the subtreeroot derived last from Ssum (syn) S integer sum of heights of the subtreesdims (syn) t integers width, height, border of the terminal nodeo�set (inh) S; F; t position relative x-, y-coordinatesheightsubtrees (inh) S integer height of subtrees derived from S and its siblingsFigure 2: Attributes for the Moen Algorithmpossible to de�ne left-of relations between siblings. The reason is that sibling nodes arenot related by edges and not produced within the same production, so no relation can bestated.As further work we plan to develop a CFNLC GG for directed acyclic graphs (DAGs)and attribute it with some of the current layout algorithms for DAGs. Even though theliterature ([3, 8]) describes generation of polynomial time parsers for subclasses of GGsand generation of attribute evalutors for AGGs, no running implementation is available.For that reason we are implementing a parser and an attribute evaluator for TGG. Forinteractive environments, where graphs are manipulated, incremental layout of graphs isnecessary. This could be done by applying incremental attribute evaluation to the attributegraph grammar approach.References[1] F. J. Brandenburg. Layout Graph Grammars: the Placement Approach. In H. Ehrig,H.-J. Kreowski, and G. Rozenberg, editors, Graph-Grammars and Their Applicationto Computer Science, 4th Int. Workshop, Bremen, Germany, 1990, LNCS 532, pages144{156. Springer, 1991.[2] D. Janssens and G. Rozenberg. Graph Grammars with Node-Label Controlled RewritingAnd Embedding. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph-Grammarsand Their Application to Computer Science, 2nd Int. Workshop, Haus Ohrbeck, Ger-many, 1982, LNCS 153, pages 186{205. Springer, 1983.[3] M. Kaul. Syntaxanalyse von Graphen bei Pr�azedenz-Graph-Grammatiken. TechnicalReport MIP-8610, Univ. Passau, 1986. (dissertation).[4] H.-J. Kreowski and G. Rozenberg. On Structured Graph Grammars I. InformationSciences, 52:185{210, 1990.[5] H.-J. Kreowski and G. Rozenberg. On Structured Graph Grammars II. InformationSciences, 52:221{246, 1990.[6] S. Moen. Drawing Dynamic Trees. IEEE Software, 7(4):21{28, July 1990.[7] E. M. Reingold and J. S. Tilford. Tidier Drawings of Trees. IEEE Trans. Softw. Eng.,SE-7(2):223{228, Mar. 1981.[8] A. Sch�utte. Spezi�kation und Generierung von �Ubersetzern f�ur Graph{Sprachen durchattributierte Graph{Grammatiken. Reihe Informatik. EXpress Edition, Berlin, 1987.(dissertation). 68



p1: F .rootdims := S.rootdimsF .contour := IF S.contoursubtrees = empty THEN layout leaf(S.rootdims)ELSE attach parent(S.contoursubtrees, S.rootdims,S.sum)S.o�set := F .o�setS.heightsubtrees := S.sump2: S0.contoursubtrees := IF S1.contoursubtrees = empty THEN F .contourELSE merge1(S1.contoursubtrees,F .contour)S0.lastsubtreeheight := F .rootdims.height + 2 * F .rootdims.borderS0.rootdims := S1.rootdimsS0.sum := IF S1contoursubtrees = empty THEN S0.lastsubtreeheightELSE S0.lastsubtreeheight + merge2(S1.contoursubtrees,F .contour) + S1.sumF .o�set.x := IF S1.contoursubtrees = empty THENS1.rootdims.border + const parent distance + S1.rootdims.widthELSE 0F .o�set.y := IF S1.contoursubtrees = empty THEN(S1.rootdims.height - S1.heightsubtrees )/2 + S1.rootdims.borderELSE merge2(S1.contoursubtrees,F .contour) + S1.lastsubtreeheightS1.o�set := S0.o�setS1.heightsubtrees := S0.heightsubtreesp3: S.contoursubtrees := emptyS.lastsubtreeheight := 0S.sum := 0S.rootdims := t.dimst.o�set := S.o�setFigure 3: Attribute Scheme of T for the Moen Layout Algorithm[9] Tree-Widget of the Athena Widget Set, X11R5 distribution of MIT, 1990.
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The Display, Browsing and Filtering of Graph-treesSandra P. Foubister� y and Colin Runciman yContextWe are writing an interpreter for a little lazy functional language. Implementation is bygraph reduction [6]. The user is allowed to view, and explore, the program graph at everyreduction step, or at less frequent intervals on request. The aim is to gain insight into theprocess of lazy graph reduction, where the order of reduction is not always intuitive. Thereare two main objectives: to explore the extent of sharing, and to be able to identify areasof ine�ciency. The potential size and complexity of the graphs pose problems for display.This paper presents and discusses novel solutions to these problems.ComplexityOne way of simplifying the display is to avoid any crossing of arcs. There is no guaranteethat a program graph will be planar { indeed, the features of a lazy language: sharing,recursion, and \knot tying" in general, make planarity unlikely. Rather than trying todisplay every arc in the graph, the solution being investigated is to use a spanning tree.This is enhanced with display leaves to represent arcs that would otherwise not be shown.Display leaves are labeled with a reference to the vertex to which they represent an arc.The problem of program graph display is thus limited to that of tree display. The specialkind of tree being displayed is referred to as a graph-tree.SizeThe problem of size (compounded by the addition of display leaves) may be resolved inseveral ways: the scale of the display may be reduced, or only part of the graph may beshown at a time. In addition to these, a solution proposed here is that the size of theunderlying graph be reduced, by grouping vertices together in clusters, so that the newgraph has fewer vertices.Graph-treesThe implementation of the programming environment is itself in a lazy functional language,namely Haskell [5]. In such a language one can de�ne a displayable graph-tree type, DGT,that is convenient for subsequent display and browsing of the structure. It is parametrisedon index, value and reference types. Indices uniquely identify vertices, values are vertexlabels (not necessarily unique), and the reference type is the type of the display reference,typically an integer.�Supported by the Science and Engineering Research Council of Great BritainyDepartment of Computer Science, University of York, Heslington, York, YO1 5DD.fsandra,coling@minster.york.ac.uk 70



data DGT i v r = DGT Xpos (Vertex i v r) [DGT i v r] | NoDGTThe Xpos is a provisional position on the x axis of the display that may be scaled to anactual x coordinate.The Vertex is either a reference to a DGT not instantiated at this point, or a vertex valuewith its associated identifying index, and possibly a display reference.data Vertex i v r = Ref (DGT i v r) | Val v i (Maybe r)The list of DGTs within a DGT construction comprises a predecessor as well as the successorsof the current DGT: we have a threaded structure that exploits the laziness of the de�ninglanguage in its construction [1].NoDGT is needed to represent the predecessor of the root of the (directed) graph. Each DGThas directly available su�cient information to redisplay the graph-tree with itself at theroot.DisplayThe requirements of the display are that it should be compact but also revealing of thestructure. Various styles of presentation were considered, including the tip-over and inclu-sion conventions described in [4], and the possibility of showing the tree as a free tree (see[3]) (despite the existence of a root). For other purposes these may be suitable, but in oursystem the display of a graph-tree re
ects the conventional display of applicative expressionsas trees: interior vertices correspond to applications, with function and argument graphsas successors. Shared reference arcs may point back up the tree.A modi�cation of Vaucher's algorithm [8] is used to calculate Xpos entries as the DGT isbeing created. The �nal display is a spanning tree of the graph, with an extra node foreach arc that is not part of the tree. The choice of spanning tree is determined by theorder in which vertices are visited during the display routine. At present the order is thatresulting from our variant of Vaucher's algorithm, but the resulting structure may not beideal for �ltering and browsing, and may not have the most satisfying appearance. However,determining an optimal spanning tree for display purposes may be infeasibly complex inour interactive setting [7].BrowsingIn addition to the main display, a minigraph, scaled to �t exactly onto a small window, isused as a map for browsing, as advocated by Beard and Walker [2]. The graph-tree has theshape it would have if labels were present, for concordance with the main display, but nolabels are shown.The main display is in a larger window, but on a �xed scale, so the graph-tree may haveto be pruned. Arcs to vertices o� the display, are truncated to form stubs. Clicking on thedisplay of a vertex, or the end of a stub, or a display reference, brings the appropriate vertexto the root of the display. Clicking in the minigraph window permits the user to jump toanother section of graph-tree. 71



FilteringIn order to reduce the number of vertices in the graph to be displayed, without violatingthe meaning of the original graph, the notion of a homosemantic graph is introduced. Theidea is that a cluster of vertices with their interconnecting arcs becomes one vertex in agraph of clusters. This vertex inherits all the arcs from the vertices it incorporates thatconnect with the rest of the graph. The value of the new vertex integrates the values of itsconstituent vertices. The full structure of the original graph is not retained in the display,but the conditions under which clusters may assimilate others are de�ned in such a waythat the graph has the same meaning. The implementation of such a �ltering scheme raisesvarious interesting questions about the de�nition of suitable \�lters", and the ordering ofcompaction of the graph.The system outlined above o�ers an e�ective way of observing even large and complexgraphs. Our current goal is to provide users of our application with a 
exible mechanismfor de�ning �lters, to achieve such views of the program graph as they �nd necessary.References[1] L. Allison. Circular programs and self-referential structures. Software | Practice andExperience, 19(2):99{111, 1989.[2] David V. Beard and John Q. Walker II. Navigational techniques to improve the displayof large two-dimensional spaces. Behaviour and Information Technology, 9(6):451 { 466,1990.[3] Peter Eades. Drawing free trees. Technical report, International institute for advancedstudy of social information science, Fujitsu laboratories Ltd., Japan, 1991.[4] Peter Eades, Tao Lin, and Xuemin Lin. Two tree drawing conventions. InternationalJournal of Computational Geometry and Applications, 1991.[5] Joe Fasel, Paul Hudak, Simon Peyton Jones, and Phil Wadler. Special issue on thefunctional programming language Haskell. ACM SIGPLAN Notices, 27(5), 1992.[6] Simon Peyton Jones and David Lester. Implementing Functional Languages. PrenticeHall, 1992.[7] Kenneth J. Supowit and Edward M. Reingold. The complexity of drawing trees nicely.Acta Informatica, 18:377 {392, 1983.[8] Jean G. Vaucher. Pretty-printing of trees. Software | Practice and Experience, 10:553{561, 1980.
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A Layout Algorithm for Undirected GraphsDaniel Tunkelang. �We propose an algorithm for generating straight-line two dimensional layouts of undirectedgraphs. Our algorithm uses a combination of heuristics to obtain layouts which are near-optimal with respect to an \aesthetic" cost function. The heuristics improve on existingapproaches by focusing on three aspects of the graph layout problem: computation of theaesthetic cost of a layout, order of node placement, and local optimization techniques.An implementation of our algorithm in C on an IBM RS-6000 workstation lays out mostgraphs of up to 100 nodes in under 10 seconds (many in less than 2 seconds) and consistentlygenerates layouts which, with respect to the three aesthetic criteria described below, arebetter than those produced by the \force-directed" algorithm of Fruchterman and Reingold[FR91] and the simulated annealing algorithm of Davidson and Harel [DH91].Di Battista et al. [DBETT93] discusses three aesthetic criteria for drawing graphs: edgelengths should be uniform; non-adjacent nodes should be far away from each other; andthe number of edge crossings should be minimal. The �rst two criteria are characteristic ofthe spring embedder model proposed by Eades [Ead84] and further developed by Kamadaand Kawai [KK89] and Fruchterman and Reingold [FR91]. Our algorithm's aesthetic costfunction quanti�es a weighted evaluation of all three criteria.Our algorithm has three stages. In the �rst stage, it determines the order in which nodes willbe placed by constructing a minimal height breadth-�rst spanning tree of the graph. Thisordering enumerates the nodes of the graph from the center outwards. In the second stage,the algorithm places the nodes one at a time by sampling positions near the already placedneighbors of a node. After placing each node, the algorithm locally optimizes the layoutnear that node. The optimization process propagates itself through neighboring nodes; thatis, whenever the local optimization procedure succeeds in improving the placement of anode, it calls itself recursively on all of the already placed neighbors of that node. Afterthis process stabilizes at a local optimum, the algorithm proceeds, iterating through thelist of nodes. The third stage �ne-tunes the layout by again performing local optimizationat every node.Our algorithm's speed is largely the result of the way it computes the aesthetic cost function.First, the computation is incremental, so that a small change in the layout requires mini-mal recomputation. Second, the algorithm approximates the cost by ignoring interactionsbetween far away, nonadjacent nodes (as in the \grid-variant" principle of Fruchterman andReingold [FR91]). Third, the algorithm uses the uniform grid technique of Akman et al.[AFKN89] to compute edge crossings. Although these methods are not conceptually origi-nal, none of the published graph layout algorithms apply them in combination to computingthe aesthetic cost function, which is the inner loop of computation.Unlike most of the published layout algorithms for undirected graphs, which initially placeall nodes randomly, our algorithm places nodes one at a time in a deterministic order. Theinspiration for our method is a node-ordering strategy proposed by Watanabe [Wat89]. Ouralgorithm places the nodes in an order that re
ects their centrality in the graph, therebyminimizing the constraints on the nodes which will eventually occupy the denser regions of�Carnegie Mellon University. For a complete paper, please send email to Daniel.Tunkelang@cs.cmu.edu. Thiswork is based on my Master's Thesis, which was supervised by Charles Leiserson at MIT and Mark Wegman atthe IBM T J Watson Research Center. 73



the layout. This strategy exempli�es a general principle: a deterministic strategy based onknowledge of the problem is better than a random one based on ignorance.The other innovation in our algorithm is its local optimization method. Whenever the algo-rithm improves the layout by moving a node, it propagates the local optimization process tothat node's neighbors. That is, whenever the improvement procedure �nds a way to reducethe cost associated with a particular node, it e�ects that improvement and then calls itselfrecursively on all of that node's neighbors. This approach provides several bene�ts. First,perfect initial placement is not so important, because the immediate attempt at local opti-mization �ne-tunes the initial guess. Secondly, propagating optimization through neighborstends to �nd the regions of the layout that need improvement and concentrate on them.Thirdly, this method of local optimization ensures that the algorithm gets what it pays for;the time it spends in local optimization is bounded in terms of the number of improvementsthe optimization generates. This method of local optimization, together with a method forrapid initial placement, makes the algorithm fast and e�ective.The proof of our algorithm's merit is in its performance. Fruchterman and Reingold, aswell as Davidson and Harel, graciously allowed implementations of their algorithms tobe used for comparison with an implementation of ours. The test suite for comparisonconsisted of examples from their papers, as well as \textbook" examples of graphs andrandomly generated graphs of up to 64 nodes. The proposed algorithm's running time isabout the same as that of Fruchterman and Reingold and is much faster than the simulatedannealing algorithm of Davidson and Harel. All three algorithms were aiming for the sameaesthetic criteria (uniformity of edge lengths, distribution of nodes, and edge crossings). Ouralgorithm consistently produced the best layout with respect to these measures, especiallythe number of edge crossings. A drawback of our algorithm is that it does not explicitlyconsider the angles between adjacent edges, since measuring them would have required
oating point computation. As a result, some of these angles are almost illegibly small. Ingeneral, however, our algorithm is very e�ective at producing low-crossing, aestheticallypleasing drawings of graphs of up to 64 nodes and average degree of up to four or �ve.Beyond this, the graphs become too dense for the proposed algorithm, and for those citedas well.In summary, our algorithm improves on existing work by optimizing the inner loop of com-putation, intelligently choosing an order for node placement, and using a local optimizationstrategy that exploits local structure within a layout. We continue to explore the manyopen problems in graph layout.References[AFKN89] V. Akman, W. R. Franklin, M. Kankanhalli, and Narayanaswami. Geometriccomputing and uniform grid technique. Computer-Aided Design, 21(7):410{420, September 1989.[DBETT93] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawinggraphs: an annotated bibliography. Technical report, Brown University, June1993.[DH91] R. Davidson and D. Harel. Drawing graphs nicely using simulated annealing.Technical report, Department of Applied Mathematics and Computer Science,Weizmann Institute of Science, April 1991. Revised version.[Ead84] P. Eades. A heuristic for graph drawing. Congressus Numerantium, 42:149{160, 1984. 74



[FR91] T. Fruchterman and E. Reingold. Graph drawing by force-directed placement.Software | Practice and Experience, 21(11):1129{1164, November 1991.[KK89] T. Kamada and S. Kawai. An algorithm for drawing general undirected graphs.Information Processing Letters, 31:7{15, April 1989.[Wat89] H. Watanabe. Heuristic graph displayer for g-base. International Journal ofMan-Machine Studies, 30:287{302, 1989.Drawing Ranked Digraphs with Recursive ClustersStephen C. NorthAbstract not Available.Graph Drawing Algorithms for the Design and Analysis ofTelecommunication NetworksIoannis G. Tollis and Chunliang Xia �The problem of drawing a graph in the plane has received increasing attention recently dueto the large number of applications [1]. Examples include VLSI layout, algorithm animation,visual languages, and CASE tools [2]. Vertices are usually represented by points and edgesby simple open curves. In this paper we study techniques for visualizing telecommunicationnetworks. The visualization of telecommunication networks is very useful in aiding thedesign process of minimum cost networks and the management of network operations [6].We present linear time algorithms for drawing telecommunication networks (with optimalarea) so that important properties are displayed.The design and analysis of cost e�ective survivable telecommunication networks is a veryimportant problem [3, 5, 7, 8, 10]. Most problems that aim towards minimizing the totalcost of a network are NP-hard [4]. For that matter, computer tools to aid the design andanalysis of telecommunication networks are in great demand. A central problem of suchtools is how to draw a network on the computer screen such that important aspects ofthe network can be easily captured and an improved solution can be obtained by a userinteractively.The problem is de�ned as follows: Let G = (V;E) be a telecommunication network witha set of nodes V (representing the sites of switches) and a set of links E (representing�The authors are with the Department of Computer Science, The University of Texas at Dallas, Richardson,TX 75083-0688. tollis@utdallas.edu, xia@utdallas.edu. 75



the electrical wires or optical �ber links between nodes). The tra�c requirements betweenthe nodes are de�ned by an n � n matrix T , where T (i; j) corresponds to the amount oftra�c between nodes i and j. We need to design a network which (a) satis�es the tra�crequirements, (b) can survive failures, and (c) the cost of the network is minimum. Anetwork is 1-survivable if it can survive the failure of a link e, i.e., the removal of link edoes not disconnect the network and the tra�c that originally travels through e can beaccomodated on another path. The multi-ring architecture is considered as a cost-e�ectivesurvivable network architecture due to its simplicity, improved survivability and bandwidthsharing [9, 10]. A ring cover of G is a set of rings (cycles) of G such that the rings areconnected and every node in V is included in at least one ring. Apparently, a network witha ring cover is 1-survivable since the switches automatically send the required tra�c aroundthe ring if a link failure occurs.Since the nodes of the network correspond to sites, they have geographic coordinates. Hence,the network can be drawn naturally with little e�ort. However, the important propertiesof the network that designers are interested in (such as rings) are not displayed. In thispaper, we describe several algorithms for drawing telecommunication networks in order toto aid the design of cost-e�cient networks. Given a ring cover of a network, our algorithmsdisplay it in such a way that rings are easily identi�able and possible problems can be easilyspotted by network designers.Ideally, we want to draw all rings as cycles, but this is not always possible if rings arenot allowed to intersect. For instance, if three rings share a common node, then the cycleswill intersect. In cases like this, we will use a geometric shape with a slight deviation fromcycle, called almost-cycle, to represent rings. An almost-cycle is such a geometric shapethat, except for very few nodes, almost all nodes of a ring are placed on the boundary of acycle. Even if we allow rings to cross, not all ring covers admit such a representation. In thispaper, we present a necessary condition for ring covers that admit such a representation.As is the case in most graph drawing algorithms, the exsitence of unnecessary crossings isviewed as harmful to the readability of the drawings. Thus, minimizing such crossings iscentral to our approach. Also, we assume the exsitence of a resolution rule, that is, in the�nal drawing, any two nodes of the network must be kept far enough so that the humaneye can tell them apart. This implies that the drawing cannot be arbitrarily scaled down. Ifwe honor such a resolution rule and represent rings as cycles, there is a trivial lower boundof 
(N2) on the area required for the drawing, where N is the number of nodes in thenetwork.In order to capture the complexity of interaction among rings, a new graph G0 is introduced.Given a network G and its ring cover C, a contact node is a node of G that is contained in atleast two di�erent rings of C. Let V 0 be the collection of all contact nodes, G0 = (C[V 0; E 0),where E 0 = f(r; v) j r 2 C, v 2 V 0 and v is a node of ring rg. Graph G0 is called the ring-contact node graph. According to the de�nition of a ring cover, G0 is a connected graph.When G0 is a tree, three di�erent drawing algorithms are introduced: outside drawing,inside drawing, and mixed drawing. All of the algorithms create zero unnecessary crossingsand take linear time.In the rest we present our main results.It seems natural to put two rings side by side when they share a contact node, since allrings will be drawn on the outer space, we call this style of drawing outside drawing.Theorem 1 Algorithm outside drawing results in a drawing which takes O(N2) area, andeach ring is represented by an almost-cycle.76



Instead of placing two rings side by side when they share a contact node, we place oneinside another. We call this style of drawing inside drawing.Theorem 2 Algorithm inside drawing results in a drawing which takes O(N2) area, andeach ring is represented by a cycle.There are some cases where an inside drawing outperforms an outside drawing. There arealso cases where an outside drawing outperforms an inside drawing. Hence, we combine thestrength of the two to obtain a mixed drawing.We assign a weight to each node v in G0. If v is a contact node, v has weight 0; if v is aring, v has a weight equal to the number of nodes in the ring. Let N 0 be the length of thesecond longest path in G0.Theorem 3 Algorithm mixed drawing results in a drawing which takes O(N � N 0) area,and each ring is represented by a cycle.References[1] G. Di Battista,P. Eades, R. Tamassia and I. G. Tollis, "Algorithms for Automatic GraphDrawing: An Annotated Bibliography," Dept. of Comp. Science, Brown Univ., TechnicalReport, 1993. Available via anonymous ftp from wilma.cs.brown.edu(128.148.33.66),�les /pub/gdbiblio.tex.Z and /pub/gdbiblio.ps.Z[2] G. Di Battista, E. Pietrosanti, R. Tamassia, and I.G. Tollis, \Automatic Layout ofPERT Diagrams with XPERT," Proc. IEEE Workshop on Visual Languages (VL'89),pp. 171-176, 1989.[3] G.R. Dattatreya, J.P. Fonseka, K. Kiasaleh, I.H. Sudborough, I.G. Tollis, and S.Venkatesan, "Advanced Network Topologies for Network Survivability," Technical Re-port, UTD, January 1993.[4] M.R. Garey and D.S. Johnson, "Computers and Intractability: A Guide to the Theoryof NP-Completeness", Freeman, 1979.[5] W.D. Grover, B.D. Venables, J.H. Sandham, and A.F. Milne, "Performance Studiesof a Slef-Healing Network Protocol in Telecom Canada Long Haul Networks," IEEEGLOBECOM 1990, pp. 403.3.1-403.3.7.[6] G. Kar, B. Madden and R. S. Gilbert, "Heuristic layout Algorithms for Network Man-agement Presentation Services" IEEE Network, November, 1988.[7] H. Sakauchi, Y. Nishimura, and S. Hasegawa, "A Self-Healing Network with an eco-nomical Spare-Channel Assignment," IEEE GLOBECOM 1990, pp. 403.1.1-403.1.6.[8] J. C. Shah, "Restoration Network Planning Tool", Proc. 8th Annual Fiber Optic Engi-neers Conf. April 21, 1992.[9] T.H.Wu, D.J. Collar, and R.H. Cardwell, "Survivable Network Architectures for Broad-band Fiber Optic Networks: Model and Performance Comparisons," IEEE Journal ofLightwave Technology, Vol. 6, No. 11, November 1988, pp. 1698-1709.[10] Tsong-Ho Wu and R. C. Lau, A Class of Self-Healing Ring Architectures for SONETNetwork Applications, IEEE Trans. on Communication, Vol. 40, No. 11, Nov. 1992.77



A View to Graph Drawing Algorithms through GraphEdMichael Himsolt �We compare a collection of graph drawing algorithms implemented in our GraphEd system.We report on our experience from running these algorithms on a large number of exam-ples both from the literature and by our own, and present our evaluation of the practicalrelevance of the algorithms and layout criteria.The representation of complex structures as graphs is widespread. Graph drawing has gainedincreasing importance in many areas of Computer Science, but has proved to be a di�culttask. Our GraphEd system is an approach to support solutions to this problem. GraphEdhas been used by practitioners for database design, Petri nets and electrical circuits. Oneof its major applications is the implementation and evaluation of graph layout algorithms.With its capabilities to create and edit graphs, GraphEd provides an e�ective environmentto create and test large sets of examples. Since all drawing algorithms are built into onetool, it is easy to compare the e�ect of di�erent algorithms on the same graph.There is also a special module (\layout suite") that runs all applicable layout algorithms onone graph. It also writes statistical data such as the size of the graph, the space used, or thenumber of bends and crossings. We have created a large database of graphs and statisticswith that module.We regard testing many examples as an adequate and probably the best way to get precisedata on the practical relevance of layout criteria and graph drawing algorithms. Currently,the following algorithms are implemented :� Spring embedder (based on algorithms by Fruchtermann/Reingold and Kamada)� Tree drawing (Walker)� Dag drawing (Sugiyama/Tagawa/Toda)� Planar drawing on a grid (Woods)� Planar drawing on a grid with bends minimization (Tamassia)� Planar straight-line drawing with convex faces (Chiba/Onoguchi/Nishizeki)� Planar straight-line drawing on a grid (de Fraysseix/Pach/Pollack andChrobak/Payne)� Drawing Petri nets from term descriptions (Seisenberger)We have tested these algorithms on a large number of examples, both from literature andby our own. We have tested arbitrary graphs as well as graphs with special structure (e.g.grids). Our experiences can be comprised as follows :� Spring embedders produce good layouts for most graphs. They stress the display ofisomorphic and symmetric substructures. A major drawback is the high runtime.� From the practical point of view, tree drawing seems to be solved, since the algorithmreproduces the tree structure in the same way as the user would do it by hand.� The algorithm of Sugiyama/Tagawa/Toda provides a good base for drawing dag's, butthe layouts are not as good as trees.�Universit�at Passau, 94030 Passau. himsolt@fmi.uni-passau.de78



� Planar graphs are generally di�cult to draw, because \planarity" alone does not ex-plain the intrinsic structure of the graph. Moreover, some planar graph drawing algo-rithms depend on the actual planar embedding, which causes further problems.Tamassia's algorithm gives our best layouts, although it has the highest running timein this class. The drawings look pretty.Wood's algorithm gives suitable results for small graphs, but the number of bends ismuch higher as with Tamassia's algorithm.The algorithms of Chiba/Onoguchi/Nishizeki and de Fraysseix/Pach/Pollack are oflimited practical use. They tend to cluster nodes and often destroy pleasing pictures.� The Petri net algorithm takes agents as input, which are term descriptions of thenets. It produces very good layouts. This comes from the fact that the agents providedetailed information on the structure of the nets. The information is used to draw thegraph as a designer would do.The good results stimulate our work on a general framework of graph grammar basedlayout algorithms.>From the experiments, our actual ranking of layout criteria is :1. Distribute the nodes in a uniform fashion.2. Display the intrinsic structure of the graph.3. Display symmetric and isomorph substructures of the graph.4. Use few edge crossings to draw the graph (none if the graph is planar).5. Use few bends to draw the graph.6. Place nodes and bends on a grid.\Straight line edges" may or may not be a good criterium, depending on the other criteriaused in a particular algorithm. It often imposes restrictions on the layout, like in the al-gorithms of Chiba/Onoguchi/Nishizeki and de Fraysseix/Pach/Pollack. We have found outthat allowing a few bends, as in Tamassia's algorithm, is usually a good choice.GraphEdis available with anonymous ftp from forwiss.uni-passau.de (132.231.1.10),/pub/local/graphed.References[1] G. Di Battista, P. Eades, R. Tamassia and I.G. Tollis \Algorithms for Drawing Graphs :An Annotated Bibliography" (contains references on most of the algorithms mentionedabove)[2] M. Himsolt, \Konzeption und Implementierung von Grapheneditoren", Dissertation,Universit�at Passau, 1993 (to be published)[3] K. Seisenberger, \Termgraph : ein System zur zeichnerischen Darstellung von struk-turierten Agenten und Petrinetzen", Diplomarbeit, Universitaet Passau, 199179



An Automated Graph Drawing System Using GraphDecompositionC. L. McCreary, � C. L. Combs, y D. H. Gill, z and J. V. WarrenzIntroductionThis paper presents a graph layout technique (CG) based on the hierarchial decomposi-tion of graphs. One of the major di�erences between the graphs drawn by CG and othersystems is that the vertices in CG's graphs are spaced in a balanced way both verticallyand horizontally. Many other systems partition vertices into levels, and all vertices of thesame level are placed on the same horizontal axis. Nodes tend to bunch toward the topof the graph is these systems. By using our graph decomposition technique, CG is able todetermine balanced vertical spacing as well as balanced horizontal spacing. Edge crossingsare reduced by a very e�cient variant of the Barycentric method that exploits the subgraphhierarchy.Graph DecompositionClan-based graph decomposition [2] is a parse of a directed acyclic graph (DAG) into ahierarchy of subgraphs called clans. A subset X of DAG G is a clan i� for all x; y 2 X andall z 2 G - X, (a) z is an ancestor of x i� z is an ancestor of y, and (b) z is a descendant ofx i� z is a descendant of y.A simple clan C, with more than three vertices, is classi�ed as one of three types . It is(i) primitive if the only clans in C are the trivial clans; (ii) in dependent if every subgraphof C is a clan; or (iii) linear if for every pair of vertices x and y in C, x is an ancestor ordescendant of y. Independent clans are sets of isolated vertices which can be visualized ashorizontal neighbors. Linear clans are sequences of one or more vertices vi; vi+1; :::; vj�1; vjwhere for i < k, vi is an ancestor of vk , and can be seen as a vertical string. Any graphcan be constructed from these simple clan as well as decomposed into a parse tree withclan components. Primitive clans do not fall into the clear-cut categories of vertices thatshould be laid out horizontally or laid out vertically. One procedure for further reductionof primitive clans is to form an independent clan of the source vertices of the primitive anddecompose the remainder of the primitive. The independent clan is linearly connected tothe rest of the clan. The parse tree of any completely decomposed graph is a bipartite treewhere the internal vertices represent clans that are classi�ed as either linear or independent.The parse tree of the graph can be given a geometric interpretation. A bounding rectanglewith known width and height can be associated with each clan. The parse tree hierarchyshows the embedding of the bounding rectangles.A simple two-dimensional algebra de�nes the bounding rectangles. Singleton DAG vertices(or equivalently parse tree leaves) have unit square bounding rectangles. Linear clans require�Dept. of Computer Science and Engineering, Auburn University, Auburn, AL. mccreary@eng.auburn.eduyEquifax Incorporated, Atlanta, Georgia.zThe MITRE Corporation, McLean, Virginia. 80



an area whose length is the sum of the lengths of the component clans and whose widthis the maximum width of the component clans. Independent clans require an area whosewidth is the sum of the widths of the component clans and whose length is the maximum ofthe lengths of the component clans. To achieve an aesthetically pleasing layout, the verticesare centered within the bounding rectangles. Since clans are de�ned as groups of verticeswith identical connections to the rest of the graph, clans can easily be contracted to a singlevertex. Any vertex not in the clan that was connected to a clan vertex will be connectedto the contracted vertex. By allowing segments of the graph to be contacted, the usercan simplify graphs for viewing by contracting those parts which are not relevant to herinvestigation. Contracted vertices can be expanded to show the original clan con�guration.The Barycentric Method Adapted to ClansThe Barycentric method [6], a heuristic for reducing the number of edge crossings in twoconsecutive levels of a graph, is modi�ed by considering adjacent clans instead of adjacentvertices. The process proceeds by rearranging adjacent parse tree children of the largestunprocessed linear clan. Because groups of vertices (clans), rather than individual vertices,are subject to rearrangement at each step, the method is much more e�cient than thestandard Barycentric method.By inspecting the structure of a graph through graph decomposition, an aesthetically pleas-ing and natural layout of the graph vertices can be constructed. By adapting existing edgerouting techniques [5, 3, 1, 4], CG is able to draw arcs that have few unnecessary edgecrossings and that are smooth and straight.References[1] E. R. Gansner, S. C. North, and K. P. Vo. Dag - a program that draws directed acyclicgraphs. Software - Practice and Experience, 18(11):1047{1062, November 1988.[2] D. H. Gill, T. J. Smith, T. E. Ohasch, C. L. McCreary, and I. V. Warren R. E. K. Stire-walt. Sparial-temporal analysis of program dependence graphs for usefull parallelisim.Journal of Parallel and Distributed Computing, to appear, 1993.[3] D. Jablownowski and V. A. Guana Jr. Gmb: A tool for manipulating and anomatinggraph data structures. Software - Practice and Experience, 19(3):283{301, March 1989.[4] L. A. Rowe et al. A browser for directed graphs. Software - Practice and Experience,17(1):61{76, January 1987.[5] K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hi-erarchichal system structures. IEEE Transactions on Syst., Man, and Cybernetics,11(2):109{125, February 1981.[6] J. N. War�eld. Crossing theory and hierarchy mapping. IEEE Transacrions on Syst.,Man. and Cybernetics, 7(7):505{523, July 1977.81



Maximum Planar Subgraphs and Nice Embeddings:Practical Layout ToolsMichael J�unger and Petra Mutzel �In automatic graph drawing, a given graph has to be layed out in the plane, possibly accord-ing to a number of topological and aesthetic constraints. Nice drawings for sparse nonplanargraphs can be achieved by determining a maximum planar subgraph and augmenting anembedding of this graph. Finding maximum planar subgraphs is NP-hard, and thereforethis technique appeared not to be practical.We attack the problem with techniques of polyhedral combinatorics. The polytope PLS(G)of G is de�ned as the convex hull over all incidence vectors of planar subgraphs of G andcalled the planar subgraph polytope. The problem of �nding a planar subgraph P of Gwith weight w(P ) as large as possible can be written as the linear program maxfwTx j x 2PLS(G)g, since the vertices of the polytope PLS(G) are exactly the incidence vectors ofthe planar subgraphs of G. In order to apply linear programming techniques to solve thislinear program one has to represent PLS(G) as the solution of an inequality system. Dueto the NP-hardness of our problem, we cannot expect to be able to �nd a full descriptionof PLS(G) by linear inequalities. But even a partial description of the facial structure ofPLS(G) by linear inequalities is useful for the design of a \branch and cut"-algorithm,because such a description de�nes a relaxation of the original problem. Such relaxationscan be solved within a branch and bound framework via cutting plane techniques and linearprogramming in order to produce tight bounds. For a partial description by inequalities weonly have to concentrate on proper faces of maximal dimension of PLS(G), so-called facet-de�ning inequalities. One of the main results of our investigation of the facial structure ofthe planar subgraph polytope is the fact that all the subdivisions of K5 or K3;3 turned outto be facet-de�ning for PLS(G).We have designed a branch and cut algorithm using facet-de�ning inequalities for PLS(G)as cutting planes. In a cutting plane algorithm, a sequence of relaxations is solved by linearprogramming. After the solution x of some relaxation is found, we must be able to checkwhether x is the incidence vector of a planar subgraph (in which case we have solved theproblem) or whether any of the known facet-de�ning inequalities are violated by x. If no suchinequalities can be found, we cannot tighten the relaxation and have to resort to branching,otherwise we tighten the relaxation by all facet-de�ning inequalities violated by x which wecan �nd. Then the new relaxation is solved, etc. The process of �nding violated inequalities(if possible) is called \separation" or \cutting plane generation". Although the vectors xcoming up as solutions of LP-relaxations in the above outlined process have fractionalcomponents in general, they are often useful to obtain information on how a high-valuedplanar subgraph might look like. We exploit this idea with a greedy type heuristic withrespect to the solution values of the edges. So, in addition to the upper bounds wTx on thevalue of a maximum planar subgraph, we also obtain a lower bound wTx from the planarsubgraph incidence vector x derived heuristically from x. The lower bound heuristic as wellas the cutting plane generation are based on a planarity testing algorithm of Hopcroft andTarjan [1].In our computational experiments we solved several problems from the literature to opti-mality. Among them there is a graph given by Tamassia, Di Battista and Batini in a paper�Institut f�ur Informatik, Universit�at zu K�oln, Pohligstra�e 1, 50969 K�oln, Germany. mjuenger@informatik.uni-koeln.de, mutzel@informatik.uni-koeln.de. 82



about automatic graph drawing ([TBB88]). In order to get the maximum planar subgraphof the graph the algorithm removed four of the 62 edges. The computation took 24 secondson a SUN SPARCstation 10 model 20. For the graph given by Kant in [K92] on 45 nodesand 85 edges the algorithm found an optimum solution with 82 edges in 7 seconds.In order to explore the limits of our branch and cut algorithm, we tested it on a series ofrandomly generated graphs. We could observe that the easiest problem instances are thoseon sparse graphs which are almost planar and dense graphs. We could observe that ourcode is able to solve all problem instances with up to 40 edges to optimality. Even thoughwe cannot solve all instances of bigger sizes to optimality, our approach allows us to givequality guarantees which state that our solutions are less than p% below the optimum,where p is given when the computation stops after a certain amount of time. The qualityguarantee turns out to be typically less than 10% for random problems with up to 80 edges.References[HT74] Hopcroft, J., and R.E. Tarjan, \E�cient planarity testing", J. ACM 21 (1974)549{568[K92] Kant, G., \An O(n2) Maximal Planarization Algorithm based on PQ-trees",Utrecht University (1992)[TBB88] Tamassia, R., G. Di Battista, and C. Batini,\Automatic graph drawing andreadability of diagrams", IEEE Transactions on Systems, Man and Cybernetics18 (1988) 61{79Heuristics for Planarization by Vertex SplittingPeter Eades and Xavier Mendon�caIntuitively, a vertex v may be \split" by making two copies v1 and v2 and attaching theedges incident with v to either v1 or v2. The operation is illustrated in Figure 1.|| || ||���� @@@@ ������SSSSSSe1 e2 e3e4 e5v @@��| | |���� ������e3e4 v1 | || |@@@@ SSSSSSe1 e2 e5v2Figure 1: The spliting operationThis simple operation is introduced to change the graph a little to make it amenable tolayout.E�ective layout algorithms impose restrictions on the input graph structure. The two mainsources of this problem are: 83



layout algorithm design. The layout algorithm is limited to special classes of graphs. Forinstance, there is a wealth of layout algorithms for planar graphs; however, thesealgorithms are useless for nonplanar graphs.task di�culty. The layout task has high complexity and we must impose restrictions onthe input to be able to handle the task within reasonable computational resources. Forinstance, �nding a planar drawing of a graph in which all edges have length one is,in general, NP-hard. However, when the input is restricted to trees, there are triviallayout algorithms for this aesthetic.The problem of transforming the input graph to conform with the restrictions is an im-portant concern. These transformations should change the graph as little as possible sothe graph does not lose it \identity". For instance, to \planarize" a graph we may deletea small number of edges, or add a small number of dummy vertices (at crossings). Manyoptimisation problems of minimising the number of such transformations are NP-complete[Men93], but e�ective heuristics are available for some.We are concerned with the splitting transformation described above. Manual layout tech-niques sometimes involve making a copy of a node in order to simplify layout (see, forexample, [Lim83]). We aim to investigate the automation of layout techniques using thesplitting operation.We are particularly interested in four basic aesthetic criteria: planarity, edge length, sym-metry and straight line drawing.We present a heuristic for planarization by splitting which we call SPLIT-PLANARIZE. TheSPLIT-PLANARIZE heuristic is based on Lempel, Even, and Cederbaum's planarity test-ing algorithm [LEC66], its implementation using PQ-trees [BL76], and the PLANARIZEalgorithm of Jayakumar, Thulasiraman and Swamy [JTS89].We also present two other algorithms which use vertex splitting for di�erent objectives. The�rst algorithm, TENSION-SPLIT, is a heuristic which consists of a modi�cation of a springsystem. A tension is calculated for each eligible vertex, and after each local minimizationstep a vertex with high tension is split. The objective of the TENSION-SPLIT algorithm isto produce a layout of a graph G0 (transformed from G by splitting) in which the Euclideandistance between the pairs of vertices u and v in G0 is equal to the length of the edges uv.Finally, an optimization criterion to perform splitting using simulated annealing is pre-sented. This is a very interesting approach since several di�erent criteria can be applied toproduce di�erent embeddings.References[BL76] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, inter-val graphs, and graph planarity using pq-tree algorithms. J. Comp. Syst. Sci.,13(3):335{379, Dec. 1976.[JTS89] R. Jayakumar, K. Thulasiraman, and M. N. S. Swamy. o(n2) algorithms for graphplanarization. IEEE Trans. Computer-Aided Design, 8(3):257{267, Mar. 1989.[LEC66] A. Lempel, S. Even, and I. Cerderbaum. An algorithm for planarity testing ofgraphs. In Theory of Graphs, Int. Symp., pages 215{232, Rome, Italy, July 1966.P. Rosenstiel (Ed.), Gordon & Breach.[Lim83] M.I.M. Holdings Limited. Organization Charts. M.I.M. Holdings Limited, Queens-land Australia, 1983. Internal Memorandum.84



[Men93] C. F. X. De Mendon�ca. A Layout System for Information System Diagrams. PhDdissertation, The University of Queensland, Department of Computer Science,June-August 1993.Planar Graph Embedding with a Speci�ed Set ofFace-Independent VerticesTakao Ozawa�IntroductionIt is known that there are many ways, in general, to embed a biconnected planar graph inthe plane. In this paper we introduce a new graph embedding problem as de�ned below,and give a very e�cient solution algorithm to it. Let G be a biconnected planar graph withvertex set V.Problem FIVS-EMB: Given a subset U of V, �nd, if possible, an embedding of G in theplane such that no two vertices of U appear on a face boundary(each vertex in U is coveredby a distinct face).In graph theory two vertices are said mutually independent if they are not the end verticesof an edge. Extending the concept of independence in relation with edges to that in relationwith faces, we say that two vertices not appearing on a face boundary are face-independent.If we want some edges, in addition to vertices, being face-independent, we only have to placea new vertex on each of the edges so that each edge is converted to a series connection oftwo edges incident to the new vertex, and then include the newly-added vertices in U. Inintegrated circuit layout it may happen that some elements should not be placed closely toavoid mutual interference. We can say that the graph embedding of FIVS-EMB takes sucha constraint into consideration in a simpli�ed way.Solution AlgorithmOur solution algorithm to problem FIVS-EMB is based on the vertex addition algorithm forplanarity testing [1], and is implemented using PQ-trees [2]. The vertices of G are labeledwith the st-numbers, and thus we have V=f1, 2, .., ng where n is the number of verticesin V. Let Gk be the subgraph of G induced by the vertex set Vk = f1 ; 2 ; ::; kg. Roughlyspeaking, the vertex addition algorithm successively embeds Gk for k=1, 2, .., n in theplane.Now, a vertex pair fx,yg(fx,yg is not equal to f1,ng) is called a separation pair if theremoval of the pair results in a disconnected graph. Let C be a connected component of theresultant graph containing vertices whose st-numbers are between x and y. The subgraph�Department of Applied Mathematics and Informatics, Ryukoku University, Seta, Ohtsu, Siga 520-21, Japan.ozawa@rins.ryukoku.ac.jp 85



of G which is obtained by adding x and y to C is called an fx,yg-split component. Theremay be two or more split components for the pair fx,yg, and there may be an edge oredges connecting vertices x and y. Let S(x,y) be the set which consists of all fx,yg-splitcomponents and edges connecting x and y, if any. Di�erent embedding can be obtainedby the following operations. (1) permutation: changing the embedding order of the splitcomponents and edges belonging to S(x,y), and (2) re
ection: re
ecting biconnected splitcomponents in S(x,y).For PQ-trees operations on nodes corresponding to the above operations on S(x,y) arede�ned. A subgraph formed by S(x,y) with a �xed embedding order of split componentsand edges in it is called a composite split component.In our solution algorithm we try to �nd an embedding of Gk which satis�es the conditionof problem FIVS-EMB. Di�culty arises when there are two or more ways of embeddingsatisfying the condition and the entire embedding of Gk can not be �nalized. We present twomajor sub-algorithms coping with this di�culty. The �rst one of them �nds, by applyingthe operations of permutation and re
ection, the most desirable embedding of Gk whileleaving some part of the embedding undecided. In order to implement this sub-algorithmlabels which indicate the existence of vertices in U on the boundaries of split or compositesplit components, are attached to the nodes of the PQ-tree representing Gk , and the sub-algorithm �nds the most desirable labels of nodes while bubbling up the PQ-tree. Thesecond major sub-algorithm decides, using an auxiliary bipartite graph, the embeddingof split or composite split components which are previously formed and contained in therelevant split component, but whose embedding has not been �nalized. We also present asub-algorithm for �nding the vertices contained in a split component while dealing withPQ-trees. This sub-algorithm is necessary for carrying out the second major sub-algorithmmentioned above.The time complexity and the space complexity of our solution algorithm are both O(n).References[1] A. Lempel, S. Even and I. Cederboum, "An algorithm for planarity testing of graphs,"in Theory of Graphs, International Symposium, Rome July 1966, pp. 215-232, Gordenand Breach, N. Y., 1967.[2] K. S. Booth and G. S. Lueker, "Testing for consecutive ones property, interval graphsand graph planarity using PQ-tree algorithms," J. Computer and System Sciences, vol.13, pp. 335-379, 1976.
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Implementation of the Planarity Testing Algorithm byDemoucron, Malgrange and PertuisetBjorn Sigurd Benestad Johansen �Previous Planarity Algorithms. Hopcroft & Tarjan [1] and Booth & Leuker [2] havepresented (quite complicated) linear planarity algorithms. A much simpler algorithm hasbeen presented by Demoucron et al [3]. The algorithms by Hopcroft & Tarjan and Demou-cron et al will be referred to henceforth as HT and DMP respectively.Although DMP is basically simple, it is abstract, and no data structures or details aregiven. The goal of this authors implementation of DMP, DMP{HT, has been to provide afast{yet{simple planarity algorithm model.A Straightforward Implementation of DMP. As described in Bondy & Murty [4], astraight{forward implementation of DMP requires sub{routines for:1) Finding a cycle in the input{graph G.2) Determining the fragments (in Bondy&Murty called bridges) of Gi in G and their verticesof attachment to Gi, where Gi is a plane subgraph of G.3) Determining the boundary of each region in Gi.4) Determining, for each fragment F , the regions of Gi where F is drawable.5) Finding a path p in some fragment F of Gi, between two of F 's Vertices of Attachment.Previous Implementations of DMP. Rubin [5] has given an O(n2) implementationof DMP, implementing to a large extent the 5 Sub{routines above. Rubin claims that hisimplementation compares favorably to HT, when run on a class of maximum planar test{graphs. Yeh [6] has subsequently investigated practical improvements to the implementationby Rubin.DMP{HT. HT and DMP both include paths, one at a time, in the plane embeddingbeing built. This observation led to DMP{HT in which techniques from HT partly are usedto implement DMP.DMP{HT utilize a totally di�erent approach then the ones from Bondy&Murty and Ru-bin/Yeh. DMP{HT is based on a linear Initial Phase and a Test Phase.Initial Phase. The �rst part of the Initial Phase is almost identical to the �rst part of HT.(That is, two values are computed for each vertex, and the adjacency lists are sorted.)Then the input{graph G is transformed to a tree T , where the vertices in T representedge{disjoint subgraphs of G, and the union of the subgraphs equals G. The Initial Phaseremoves the need for explicitly implementing any of the 5 Sub{routines above.Test Phase. A plane embedding Gi is (implicitly) being built. As in DMP, Gi is initiallyempty, then a cycle is (implicitly) added, then one and one path is (implicitly) added. Theinclusion of a path p through a fragment F in a region r of Gi will essentially only require:Loop1. Determine the truth value of one or two statements and performing three or fourimperatives for each new fragment emerging as a result of the the inclusion of p in Gi.�Department of Informatics, University of Oslo, Norway. bjornjoh@i�.uio.no87



Loop2. Determine the truth value of one or two statements and performing two or fourimperatives for each fragment (6= F ) which was drawable in r.Comparison with HT. DMP{HT and HT seem to contain approximately the samenumber of lines of code.DMP{HT has not been programmed in the same language and on the same computer asin [1]. Programmed in Simula on a Sparc{10, DMP{HT tested maximum planar graphswith 1000 vertices in approximately 2.5 seconds. This is probably inferior to HT, but maybe satisfactory for practical purposes. But DMP{HT has a worst{case time ratio of O(n2),and for special graphs unsatisfactory results may occur. As in HT, the space requirementsare of order O(n).DMP{HT may be viewed as conceptually simpler then HT, even though the proof of DMP{HT is fairly long. The proof shows, that a fragment F which is drawable in preferably onlyone region is directly accessible, that a path p through F is directly accessible from T , andthat new fragments (see Loop1) are also directly accessible from T , how new edges can beadded to Gi thus maintaining only sorted regions, and how the fact that all regions sortedcan be utilized when determining in which regions new (Loop1) and old (Loop2) fragmentsare drawable. In DMP{HT every fragment will be determined as drawable in a maximumof two regions, and the inclusion of a path in Gi will result in three (rather then two) newregions. This will reduce the expected average number of drawable fragments in each region,thus reducing the expected running time of DMP{HT.Also, DMP{HT directly tests graphs containing cut{vertices, and a plane embedding isimplicitly given. An expansion to explicitly give a plane embedding in terms of regions seemsto be straightforward. This plane embedding may also be constructed in a static fashion:Every path included in the plane embedding being built, can be embedded permanently inthe plane.Testresults. DMP{HT was tested empirically on two classes of planar graphs:Class I. Construction of a 2{connected planar graph consisting of n; n � 3; vertices: Firsta cycle consisting of between (randomly) 3 and max(3; n2 ) vertices was generated. Then, arandom region r was repeatedly chosen to include a vertex v in r, and to generate an edgebetween v and a vertex in the boundary V (r) of r with the probability 2:5jV (r)j . If deg(v) < 2prevails, delete all the edges incident with v, and repeatly generate edges as above untildeg(v) � 2. Finally, all the adjacency lists are to be randomized.Class II. Maximum planar graphs were generated as above, with the exception that theinitial cycle contained exactly 3 vertices, and exactly 3 new edges were generated when onevertex v was included in a random region r.DMP{HT was empirically tested on 1,000 graphs generated from each of the two classes.Each of the graphs contained between 1,000 and 100,000 vertices. For each graph G thenumber of repetitions of the interior loops (Loop1 and Loop2) was counted, and plottedagainst jE(G)j. As can be seen, DMP-HT behave in an almost linear manner for thesegraphs:
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a) \Random" Planar Graphs b) \Random" Maximal Planar Graphs3.000.000Loops 300.000Edges 3.000.000Loops 300.000EdgesIn the complete paper, DMP{HTmethodology is presented, validation of DMP{HT is given,and a complete implementation of DMP{HT is presented, assuming that the graph to betested for planarity is stored on �le as a set of adjacency{lists.References[1] J. E. Hopcroft & R. Tarjan, \E�cient Planarity Testing" J. Assoc. Comput. Mach. 21(1974) 549{568[2] K. S. Booth & G. S. Leuker, \Testing the Consecutive Ones Property, Interval Graphs,and Graph Planarity Using PQ{tree algorithms" J. Comput. Syst. Sci. 13 (1976) 335{379[3] G. Demoucron, Y. Malgrange & R. Pertuiset, \Graphes Planaires: Reconnaissance etConstruction de Represetations Planaires Topologiques" Revue Fran�caise de RechercheOp~erationelle, Vol. 8, No. 3 (1st quarter, 1964), 43{47[4] J. A. Bondy & U. S. R. Murty, \Graph Theory with Applications" Macmillan, London,1976[5] Frank Rubin, \An Improved Algorithm for Testing the Planarity of a Graph" IEEETransactions on Computers, Vol. c{24, No 2, February 1975[6] Dashing Yeh, \Improved Planarity Algorithms" Bit 22, 1 (1982), 2{16.A Uni�ed Approach to Testing, Embedding and DrawingPlanar GraphsJoel Small �Let G = (V, E) be a simple, undirected graph with vertex set V and edge set E. We �rsto�er improvements to Williamson's version of the Hopcroft-Tarjan (HT) planarity testingalgorithm while maintaining the O(n) execution time. Then, with the data structures andgraph embedding in place from this algorithm, we augment the data structures and usethe computed embedding to calculate and draw a rectilinear layout of the graph. The�Naval Command, Control and Ocean Surveillance Center, San Diego, California. jsmall@nosc.mil89



algorithms for augmenting data structures and drawing the graph run in O(n) time as well.Furthermore, the augmented data structures lend themselves to e�ciently generating manynonisomorphic drawings.The planarity testing algorithm exploits the bridge-cycle recursion for biconnected graphsintroduced by HT. Brie
y the idea is to choose a cycle C in G. Edges in E(G) (the edgeset of G) not in E(C) are called the simple bridges of G with respect to C if both endpointslie on C. Remove C together with all edges incident to C from G. The resulting graph isa collection of connected components. These components together with the simple bridgesare called the bridges of G with respect to C. In any plane drawing of G, the cycle C willpartition the plane into two regions, a �nite and an in�nite region. Each bridge must lieentirely in one region. The bridge graph of G with respect to C, denoted BRGR(G,C), is agraph whose vertices are the bridges of G with respect to C. There is an edge between twovertices B1 and B2 in BRGR(G,C) if B1 and B2 must be drawn on opposite sides of C inany plane drawing of G. The idea for an e�cient algorithm to test if G is planar will be tochoose a cycle C, then construct the bridges of G with respect to C. Add edges from C toeach bridge to make it biconnected (these are called the augmented bridges), and recursivelytest each augmented bridge to determine if it is planar. Finally compute BRGR(G,C) andcheck that this graph is bipartite. If it is then this gives a valid means for locating thebridges about C to get an embedding of G.The bridge-cycle recursion is exempli�ed by a data structure called the pathtree of G,denoted PATR(G,T), [3, Def. 7.14]. T is a lineal spanning tree of the graph G. PATR(G,T)is a rooted, ordered tree whose vertices are paths in G de�ned using T. The vertices of thistree de�ne a partition for both the vertex set V(G) and the edge set E(G). PATR(G,T)can be traversed in postorder to test the graph for planarity. We o�er some improvementsto previous versions of algorithms for traversing the pathtree. These improvements areprimarily in computing and maintaining the spanning forests for bridge graphs and insimplifying the tests necessary to update the spanning forests when adding new vertices tothe bridge graph. This work has facilitated the actual implementation of the algorithms.As a part of the planarity testing, vertices of the pathtree can be colored to de�ne anembedding for the graph if it is planar, or identify an obstruction if it is not. If the graphis planar, we show how to augment the pathtree and use this augmented pathtree to drawa rectilinear layout of the graph where vertices are represented by horizontal intervals andedges are drawn using vertical intervals (also called a weak visibility representation in [2]).The edge partition de�ned by the pathtree is maintained in the drawing by placing edges inthe same block on the same vertical line. The general idea to obtain the drawing is describednext.Suppose we are given a planar graph G along with a PATR(G,T) that has been colored toidentify a planar embedding. We assign a left-right orientation to the vertices of the pathtreethat identi�es the orientation of the paths as they are drawn in the plane. Next, we can usethe PATR(G,T) in conjunction with the orientation to assign a valid st numbering to thevertices. Finally, we compute the horizontal placement for the vertices (paths of G) of thepathtree. Vertices of the graph G are placed vertically according to their st number. Weplan to describe the algorithms to accomplish the drawings in more detail at the meeting.We have written a versatile, interactive graph software package called GAP, a Graph Anal-ysis Program, to study graphs and graph algorithms. Versions are available for both PCsand SUN workstations. The data structures and algorithms we describe for testing, embed-ding and drawing planar graphs have been implemented as part of this package. The �veprimary components for doing this are to perform a depth �rst search and compute lownumbers (DFS), sort the vertices using a lexicographic bucket sort (LEXSORT), compute90



the pathtree (PATR), build the spanning forests for bridge graphs and test for odd cycles(PLTEST), and last, augment the pathtree and compute a rectilinear layout (RECDRAW).We ran the program on maximal planar graphs generated according to the following algo-rithm:procedure RandomGraph( Graph G, NumberOfVertices nv )1. G K32. tv  33. While tv < nv do3.1 Select a face f at random.3.2 Add a new vertex v to G.3.3 tv  tv + 1.3.4 Add edges fv,w1g, fv,w2g, fv,w3g to G, wherew1; w2; w3 are the vertices lying on f.3.5 Update the list of faces of GThe table below shows the mean time, in seconds, for each of the components on 100maximal planar graphs having 500, 1000, 2000, 4000 and 8000 vertices.jV j DFS LEXSORT PATR PLTEST RECDRAW TOTAL500 0.04 0.22 0.18 0.49 0.07 1.001000 0.09 0.45 0.40 1.03 0.14 2.112000 0.18 0.95 0.80 2.05 0.30 4.284000 0.36 1.99 1.73 4.61 0.60 9.298000 0.73 3.92 2.47 9.88 1.10 18.10BIBLIOGRAPHY1. Rosenstiehl, P. and Tarjan, R. E., Rectilinear Planar Layouts and Bipolar Orientationsof Planar Graphs, Discrete and Computational Geometry, 1 (1986), 343-353.2. Tamassia, R. and Tollis,I. G., A Uni�ed Approach to Visibility Representations ofPlanar Graphs, Discrete and Computational Geometry, 1 (1986), 321-341.3. Williamson, S. G., Combinatorics for Computer Science, Computer Science Press,19854. Williamson, S. G., Embedding Graphs in the Plane - Algorithmic Aspects, Annalsof Discrete Mathematics 6: Combinatorial Mathematics, Optimal Designs, and TheirApplications (J. Srivatsava, Ed.), North Holland, 1980, 349-384.
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A Simple Linear-Time Algorithm for Embedding MaximalPlanar GraphsHermann Stamm-Wilbrandt�IntroductionAll existing algorithms for planarity testing / planar embedding can be grouped into twoprincipal classes. Either, they run in linear time, but to the expense of complex algorithmicconcepts or complex data-structures, or they are easy to understand and implement, butrequire more than linear time ([1]).In this paper, a new linear-time algorithm for embedding maximal planar graphs is pro-posed. This algorithm is both easy to understand and easy to implement. The algorithmconsists of two phases, both of which use only simple, local graph-modi�cations.In addition to planar embedding, the new algorithm allows to test graphs for maximalplanarity. We will also demonstrate how to generate random (maximal) planar graphs usingthis algorithm. The algorithm proposed constitutes a �rst step towards a simple, linear-timesolution for embedding general planar graphs.y A full version of this abstract may be foundin [5]. Notice that our results make use of a seminal paper dealing with planar 3-boundedorientations by Chrobak and Eppstein [2].One of the referees made us aware of a paper by R.C. Read [4].zBasic de�nitionsThe terminology used in this paper is adopted from [3]. Let G = (V;E) be a planar graph,and ADJ [v] for all v 2 V denote the adjacency lists of G. An embedding of G is de�nedas an ordering of the adjacency lists of G, such that for each vertex v 2 V the order ofthe edges in ADJ [v] corresponds to a counter-clockwise traversal of the edges in any �xedembedding of G in the plane. A simple planar graph is called maximal planar, if the additionof any new edge results in a non-planar graph. The smallest maximal planar graph w.r.t.the number of vertices is de�ned as the complete (maximal planar) graph on 4 vertices K4.Thus, a maximal planar graph does not contain any vertex of degree less than 3. This isbecause such graphs are triconnected. The triconnectivity also enforces a unique embeddingin the plane w.r.t. a chosen outer face.A key concept for the new algorithm is the notion of reducible vertices:De�nition 1 A vertex v of G = (V;E) will be called small, if deg(v) < 18, otherwise it willbe called large. A vertex v 2 V is reducible if it satis�es one of the following conditions: (a)deg(v) � 3 or (b) deg(v) = 4 and v has at least 2 small neighbors, or (c) deg(v) = 5 and vhas at least 4 small neighbors.�Institut f�ur Informatik III, Universit�at Bonn. hermann@holmium.informatik.uni-bonn.deyThis goal has been recognized as a sigini�cant open problem in [1].zHis methods are similar to those described here, but they need a (topological) embedding of the input graph,and they compute a straight line drawing of it in linear time and quadratic space. Our algorithm runs in lineartime and linear space, determines the (topological) embedding and can additionally incorporate Read's coordinatedetermination naturally to result in an embedding in the plane92


