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Graph drawing addresses the problem of constructing geometric representations of abstract
graphs and networks. It is an emerging area of research that combines flavors of graph theory
and computational geometry. The automatic generation of drawings of graphs has important
applications in key computer technologies such as software enginering, database design, and
visual interfaces. Further challenging applications can be found in architectural design, circuit
schematics, and project management. Research on graph drawing has been especially active
in the last decade. Recent progress in computational geometry, topological graph theory, and
order theory has considerably affected the evolution of this field, and has widened the range of
issues being investigated.

This first international workshop on graph drawing covers major trends in the area. Papers
describe theorems, algorithms, graph drawing systems, mathematical and experimental analyses,
practical experience, and a wide variety of open problems. Authors come from diverse academic
cultures: from graph theory, computational geometry, and software engineering.
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New Developments in Geometric Graph Theory
J. Pach.

Abstract not Available.

Characterizing Proximity Trees

Prosenjit Bose,” William Lenhart,! and Giuseppe Liottal

Much attention has been given over the past several years to developing algorithms for
embedding abstract graphs in the plane such that the resulting drawing has certain geomet-
ric properties. For example, those graphs which admit planar drawings have been completely
characterized and efficient algorithms for producing planar drawings of these graphs have been
designed ([4], [9]). For an overview of graph drawing problems and algorithms, the reader is
referred to the excellent bibliography of Di Battista, Eades, Tamassia and Tollis [2]. More-
over, many problems in pattern recognition and classification, geographic variation analysis,
geographic information systems, computational geometry, computational morphology, and com-
puter vision use the underlying structure present in a set of data points revealed by means of a
prozimity graph. A proximity graph attempts to exhibit the relation between points in a point
set. Two points are joined by an edge if they are deemed close by some proximity measure.
It is the measure that determines the type of graph that results. Many different measures of
proximity have been defined. The relatively closest graph [6], the relative neighborhood graph
[10], the gabriel graph [3], the modified gabriel graph [1] and the delaunay triangulation are but
a few of the graphs that arise through different proximity measures.

An extensive survey on the current research in proximity graphs can be found in Jaromezyk
and Toussaint [5]. As the survey suggests, interest in proximity graphs has been increasing
rapidly in the last few years, but most of the interest has been algorithmic and little attention
has been given to the combinatorial characteristics of these graphs. Monma and Suri [8] show
that any tree with maximum vertex degree five can be drawn as a minimum spanning tree.

We study the problem of drawing trees as certain types of proximity graphs. We say that a
tree T can be drawn as a proximity graph when there exists a set of points in the plane such
that the proximity graph of that set of points is isomorphic to T. Some sufficient conditions
for such drawings to exist have been given by Cimikowski [1] for relatively closest graphs, by
Matula and Sokal [7] for gabriel graphs and by Urquhart [11] for relative neighborhood graphs.
However, there exists no complete combinatorial characterization for any of the these types of
proximity graphs. To this end, we give a complete characterization of the trees that can be
realized as either the relative neighborhood graph, relatively closest graph, gabriel graph or
modified gabriel graph of a set of points in the plane.

*Research supported in part by NSERC and FCAR. School of Computer Science, McGill University, 3480
University, Montréal, Québec, H3A 2A7. jit@muff.cs.mcgill.ca

" Department of Computer Science, Williams College, Williams- town, MA 01267. This work has been done
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The sufficiency of the conditions of our theorems is established by providing drawing al-
gorithms. Given an abstract tree that admits a particular type of drawing, say as a gabriel
graph, the drawing algorithm will compute a set of points such that the gabriel graph of the
set of points is a tree that is isomorphic to the given tree. As for the necesssity, for each type
of proximity graph considered, we exhibit a set of trees, called forbidden trees, which we show
cannot be drawn as that type of proximity graph. We then prove that no tree which can be
drawn as such a proximity graph can contain any of the forbidden trees.

Theorem 1 A tree T can be drawn as the relatively closest graph or relative neighborhood graph
if and only if the mazimum vertex degree of T is at most 5. The drawing can be obtained in
O(n) time, where n is the number of vertices in T, in the real RAM model.

Theorem 2 A tree T can be drawn as the modified gabriel graph if and only if the maximum
vertex degree of T is at most three. This drawing can be obtained in O(n) time where n is the
number of nodes in T, in the real RAM model.

The characterization of trees which can be drawn as gabriel graphs depends on a set of
subgraphs called wide trees. A rooted tree (1',u) consists of a tree T" and a distinguished vertex
w of T, called the root of T'. Given a tree T, a vertex v of T and a neighboring vertex z of v,
T.(v) is defined to be the component of ' — v containing z.

Definition 1: A rooted tree (T, u) is wide if
1. deg(u) =2 or
2. deg(u) = 1, u has neighbor v of degree four and for each neighbor z of v,  # u, (T(v), )
is wide.
Definition 2: A tree T is forbidden if it contains any of the following
1. A vertex of degree at least five
2. Two adjacent vertices of degree four

3. A vertex v of degree four such that for each neighbor z of v, the subtree (1,,(v), z) is wide.

Theorem 3 A tree T can be drawn as the gabriel graph if and only if T is not forbidden. This
drawing can be obtained in O(n) time where n is the number of nodes in T, in the real RAM
model.
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A Note on a Separator Algorithm for Tree Embeddings and its
Application to Free Tree Drawings

Franz J. Brandenburg* and Peter Eades'

Divide and Conquer is one of the major principles for algorithm design. It leads to fast
algorithms with good outputs, particularly if the division partitions a problem instance into
two parts of almost equal size. For a problem instance of size n the partition tree of solvable
subproblems is then a complete binary tree of size 2n — 1. This means only a linear growth in
size or an O(1) expansion. However, if there is no strict partition into equal sized subproblems,
then the partition tree may be any binary tree. Binary trees are 1-separable, i.e., they admit
a partition into two subtrees in the range 1/3..2/3. In fact, for every k& < 3 n, where n is the
size of the tree, there is a subtree of size m and k/3 < m < 2k/3. Moreover, there is a fast
search algorithm for a proper subtree in the 1/3..2/3 range, searching in the bigger subtree until
its size falls under 2k/3. There may be a subtree ¢’ which approximates k/2 much better than
the guaranteed range of k/3..2k/3, and this ¢ may lie somewhere in a smaller branch. These
well-known strategies are used in our embedding algorithm.

Algorithm DFS-EMBED
DFS-EMBED maps a binary tree ¢ into a complete binary tree ¢’ such that each node and each
edge of t' are visited twice according to a depth-first traversal. Moreover, the root of ¢ is pinned
to the root of t'. ¢’ should be big enough. It is easily reduced to minimal size.

Let S = vg, v1, ..., v, be the sequence of nodes of ¢’ visited in a dfs traversal by the recursion:
root, left, right, root. Let P = zg,21,..., %441 be the path in ¢ from the root to some designated

*Universitat Passau Lehrstuhl fiir Informatik 94030 Passau, Germany. brandenb@informatik.uni-passau.de
'University of Newcastle Department of Computer Science Callahan, NSW 2308, Australia.
eades@cs.newcastle.edu.au



node x,4; selected by a good strategy. For ¢« = 0,...,¢ let y; be the other child of z; and let ¢;
denote the subtree of ¢ with root y;. Let {,41 be the subtree with root z,4,. Rearrange P to

the sequence @) = z1, ..., %4, g1, 2o and consider the sequence of subtrees t;, ..., %,, {441, %0.
Rename zg into z449 and g into ¢4, such that @ = z1,...,2442.
Forv=1,...,¢+2,if #; is nonempty then map its root y; to the next vertex v;;) in the

sequence 5 such that the vertex v;(;) was unmarked and - by recursion - ¢; fits into the complete
subtree of ¢’ with root v;(;)- All vertices of this subtree will be doubly marked. Map the ancestor
z; of y; to the ancestor w of v;(;, increase the mark of w and update all ancestors of w by a
single mark.The edge from z; to y; is directly mapped into the tree edge of ¢'. If ¢; is empty,
then map z; to the next not yet doubly marked vertex in the sequence 5 and increase the mark
by one. It remains to route the edges on the path zg,z1,...,2441 and from zg to the second
child z449. For e =1,...,¢+4 1, the edge from z;_; to z; is mapped to the path according to
the df s traversal of ¢’, with the edge from z¢ to z; along the first traversal and the others along
the second. The edge from zg to 449 is routed along the second traversal from z,49 to zg.

For a illustration of DF'S-EMBED draw z1, ..., 244 as the rightmost path in the left subtree
with each t; below z; and let {3 be the right subtree of the root zq.

Algorithm DFS-EMBED has the following properties:

Lemma: DFS-EMBED runs in linear time.

Lemma: Lettbe abinary tree of size n. If DF'S-EMBED chooses the path P = xg,21,..., 2441
such that

(i) for e =1,...,¢+ 1 the subtree with root z; is bigger than the other subtree ¢; or
(i) 1/4 size(t) < size(ty) + size(ty41) < 3/4 size(t) or

(iii) (¢) and (7¢) hold

then DFS-EMBED(t) is a complete binary tree with height at most 2 - log n.

Proof: (Sketch) DFS-EMBED maps a sequence of chained trees 7" = (21,t,...,24,1,),
where z; is the ancestor of ¢; and z;41 into a complete tree whose height exceeds the height of

an almost optimal binary search tree at most by one. The access distribution for the search tree
is 1/W for each z; and 2°9%+1 — 1 /W for each t; of size n; with W = 23 2lo8"™, 0

We wood like to have an additive increase of the height only, but for DFS-EMBED the factor
¢ = 2 is best possible.

Lemma: There is an infinite sequence of binary trees 7; such that DFS-EMBED (T3)
produces complete binary trees of height 2 -log(n;) with n; = size(T;).

Proof: (Sketch) Let the left subtree of T; consist of a new vertex with two copies of T;_
as its subtrees and let the right subtree of T; be trivial, consisting e.g. of two vertices. Let Ty
be the complete tree with three vertices. Then T} has 14 - 2° — 4 vertices. By induction, one of
the two T;_q needs height at least 2 - log (size(T;_1)), and DFS-EMBED sets the root of this
T;,_1 at depth 2. 0

Corollary: Every binary tree ¢ of size n can be embedded into a complete binary tree ¢/
of height ¢ -logn with ¢ < 2, congestion 2 and dilation O(logn). Thus, the expansion is O(n),
each edge of ¢’ is used at most twice and each edge of ¢ is mapped into a path of length at most
c-logn.

Remark: The linear expansion obtained from the factor ¢ = 2 for the increased height is
better than the one obtained by Hong et al [HMR] and Ruzzo and Snyder [RS]. They demand
bounded dilation and then achieve ¢ = 5 (Ruzzo, personal communication) which yields an
expansion of O(n?).



For free tree drawings or equivalently planar embeddings of binary trees one may use DFS-
EMBED as an intermediate step, but this is a detour.

Corollary: For every binary tree ¢ of size n there is a free tree drawing d(¢) derived from
tree drawings of complete binary trees, such that d(¢) uses O(n?®) area and has edges with
O(logn) bends.

This result is non-competitive. Valiant [Va] has shown that there are planar tree embeddings
with O(n) area and O(logn) bends and Crescenci et al. [CBP] have upwards drawings with
O(n -logn) area and no bends
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Two Algorithms for Drawing Trees in Three Dimensions

Brian Regan®

This paper explores the presentation of tree structures in three dimensions. Some visualiza-
tion systems have begun to use three dimensional tree drawings [8]; however, the wealth of funda-
mental results on two dimensional tree layout (for example, [12, 6, 10, 10,4, 11, 1, 14, 13, 10, 2, 5])
is not matched in three dimensions. We are specifically interested in drawing free trees, that is,
trees with no pre-specified root.

Two extensions to existing tree drawing algorithms were developed. The first takes the H-
tree drawing algorithm for binary trees and extends it into three dimensions. This additional
dimension is achieved by alternating the direction of the next node between three rather than
two axes. The H-tree algorithm produces a grid drawing. The second algorithm takes the
principle of a radial drawing algorithm [3] and extends it into three dimensions. The successive
annuli of the radial algorithms are replaced by successive spherical shells sharing a common

*Department of Management, University of Newcastle, New South Wales, AUSTRALIA.



centre. Working from a root node at the centre, for each node an area for its descendants is
projected onto the next shell. This area is compared with the area formed by the intersection
of the tangent plane at the given node with the next outer shell. This second area is the
equivalent of the annulus wedges formed in the two dimensional case. The smaller of these two
areas is subdivided according to the number of children of the original node. The subdivision
is accomplished by using a Lambert equal area projection of the sphere onto a plane [9], and
allocating rectangles for each of the child nodes, from which spherical coordinates of the nodes
are then determined. Improvement to the final layout will be gained from further refinement to
the allocation algorithm for the projected surface area.

One of the main aims of this study is to develop measures for the effectiveness of three
dimensional tree drawings. In particular, the conventional measure of the area of a grid drawing
has an equivalent in terms of volume when working in three dimensions. However, this measure
loses its relevance when the graph is drawn in a plane: the volume drops to zero. In addition,
when considering the display of the graph on a screen, it becomes obvious that the crucial
measure of the graph’s image is the maximum size of its sides. With such a measure we can
determine whether the full graph will remain visible after the application of any rotation. Thus
we define the size of a grid drawing of a graph to be the maximum length of a side of its smallest
enclosing isothetic rectangular prism. We believe that this measure is especially relevant to
orthogonal drawings, that is, drawings in which edges are parallel to one of the coordinate axes.
The size of an H-tree presentation for any binary tree within 3 dimensions with n nodes is O(n).

Theorem 1 The size of an H-Tree drawing in 3 dimensions of a complete binary tree with n

nodes is O (nl/S).

The radial algorithm above does not give grid drawings and so the size measure loses its
significance.

The diameter of a graph drawing in three dimensions is the maximum distance between
any two vertices. We propose two further measures for the quality of a graph drawing in three
dimensions:

e The ratio A\/l, where [ is the length of the shortest edge and A is the length of the longest
edge. Long edges are difficult to follow and we believe a large value for this ratio charac-
terises a poor layout.

e The ratio n/d, where d is the diameter of a drawing and 7 is the shortest distance between
a (adjacent or nonadjacent) pair of nodes. In this case, a large value is an indication of a
good layout.

Theorem 2 If [ is the length of the shortest edge, and X is the length of the longest edge in a
drawing of a tree with n nodes obtained from the radial algorithm, then A/l is O (\/n).

Theorem 3 If d is the diameter and n is the shortest distance between a pair of nodes in a
drawing of a tree with n nodes obtained from the radial algorithm, then n/d is Q (%)

Both our algorithms have been implemented in Windows and Unix environments. Samples
of binary trees have been processed against the H-Tree algorithm and a varied collection of trees
were processed with the radial algorithm. These samples give some support for the proposed
measures; further, we believe that they form an interesting collection which may become useful
for benchmarking future three dimensional tree drawing algorithms.
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Area Requirement of Visibility Representations of Trees *

Goos Kant, T Giuseppe Liotta, ¥ Roberto Tamassia, ° and Ioannis G. Tollis ¥

The problem of drawing a graph in the plane has received increasing attention recently due
to the large number of applications [1]. Examples include VLSI layout, algorithm animation,
visual languages and CASE tools. Vertices are usually represented by points and edges by simple
open curves. Another interesting representation is to map vertices into horizontal segments and
edges into vertical segments [7, 11]. Such a representation is called a visibility representation. In
this paper we study the area requirement of various types of visibility representations of trees,
and we present linear time algorithms for drawing such representations with optimal area.

The concept of visibility between objects plays an important role in various problems of
computational geometry, where we say that two objects of a given set are wvisible if they can be
joined by a segment which does not intersect any other object. Two objects of the set are e-visible
if they can b e joined by a non-zero thickness band which doesn’t intersect any other object. The
objects are non overlapping. A visibility representation of a graph maps vertices into objects
and edges into segments between visible vertex-objects. Various visibility representations have
been considered in the literature, and received increasing attention recently (see [9] for an up to
date overview).

Tamassia & Tollis [11] studied three types of visibility representations (weak, €, and strong)
of graphs. A weak visibility representation maps vertices to horizontal segments and edges to ver-
tical segments having only points in common with the pair of horizontal segments corresponding
to the vertices they connect. Algorithms for constructing weak visibility representations were
presented in [11] and independently in [7]. This type of representation has become a core item
in the field of graph drawing. Recently, Kant [8] showed that such a visibility representation can
be constructed in linear time on a grid of size at most ([2n] —3)x (n—1). A strong visibility rep-
resentation maps vertices to horizont al segments such that two segments are visible if and only
if the corresponding vertices are adjacent [11]. Tamassia & Tollis showed that every triangular
planar graph and 4-connected planar graph has a strong visibility representation [11]. However,
deciding whether a general planar graph has a strong visibility representation is NP-complete
[1].

Several years after the publication of the first papers, researchers started the study of the
2-dimensional variant of this problem: vertices are represented by isothetic rectangles, and edges
are represented by horizontal or vertical segments, having only points in common with the pair
of rectangles corresponding to the vertices they connect. We only consider rectangles with
non-zero area and sides parallel to the z-axis and y-axis. This representation is called 2-weak
visibility representation. In [12] Wismath proves that every planar graph admits a 2-¢ visibility
representation, that is a 2-weak visibility representation representation with the ad ditional
property that two rectangles are e-visible if and only if the corresponding vertices in the graph

*Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. Army
Research Office under grant DAAL03-91-G-0035, by the Office of Naval Research and the Advanced Research
Projects Agency under contract N00014-91-J-4052, ARPA order 8225, and by ESPRIT Basic Research Action
No. 7141 (Project ALCOM II). This work was performed in part at the Bellairs research Institute of McGill
University.

" Department of Computer Science, Utrecht. University P.O. box 80.089, 3508 TB Utrecht, NL. goos@ cs.ruu.nl.

{Dipartimento di Informatica e Sistemistica Universita’ di Roma La Sapienza, 00185 Roma, Italy. This work
has been done while this author was visiting the School of Computer Science of McGill University, Montreal.
liotta@infokit.ing.uniromal.it.

YDepartment of Computer Science, Brown University, Providence, RI 02912-1910. 1t@cs.brown.edu.

Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083-0688.
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are adjacent. A 2-strong visibility representation maps each vertex to a rectangle such that two
rectangles are visible if and only if the corresponding vertices in the graph are adjacent.

Recently, the area of the representation has gained a lot of attention, especially in the field
of graph drawing [11, 4, 5, 2]. Fades et al. in [6, 7] study different possible representations
of trees under the constraint of minimizing the size of the drawing. For a complete survey on
graph drawing see [1]. The area of a drawing is the area of the smallest rectangle with sides
parallel to the axes covering the drawing. The width and the height of the drawing are the width
and the height of the covering rectangle. We assume the existence of a resolution rule, which
implies that the width and the height of a drawing cannot be arbitrarily scaled down. A typical
resolution rule for 1- and 2- visibility representations is requiring for the endpoints of the vertex
segments or vertex rectangles to be placed at the points of an integer grid. The existence of such
a resolution rule naturally raises the problem of computing 1- and 2-visibility representations of
a graph with minimum area.

We investigate the strong visibility problem for trees. The contribution is twofold. First we
show lower bounds on the area occupied by any 1- and 2-strong visibility representation of trees.
Next we present linear time drawing algorithms that obtain such representations achieving these
bounds. Since in this paper we only study 1- and 2-strong visibility representations, we call them
1- and 2-visibility representations, for brevity.

In the rest of this abstract we give a list of the main results.

Theorem 1 Let T be a rooted tree with n vertices, | leaves and height h. The area required by
a 1-visibility representation I'(T) of T is ©(h -1). Also I'(T) can be computed in O(n) time.

Let T be a free (i.e. unrooted) tree. Let v be a vertex of T and let T, ..., TF be the subtrees
obtained by removing v and the edges incident on v. We root each subtree T¢ at the unique
vertex of T}, adjacent to v in T. We assume that always h(T}) > h(T2) > ... > h(TF) in this
paper. TF is called the k-th highest subtree of v.

We denote with T, the tree obtained by deleting from T the first and the second subtree
of v and the incident edge of v to T} and to T2. Root T, at v. We call the third vertex of T
the vertex v* such that the height of the third highest subtree of v* is maximum, i.e., for which
h(T,+) is maximum. Let £* be the corresponding height, i.e., k* = h(T,»).

Theorem 2 Let T be a free tree with n vertices and | leaves; let k* be the height of the third
subtree of the third vertex of T. The area required by a 1-visibility representation U'(T') of T is
O(k* -1+ n). Also I'(T) can be computed in O(n) time.

Theorem 3 Let T be a free tree with n vertices, | leaves and height h. The area required by a
2-visibility representation I'(T) of T' is O(l - n). Also I'(T') can be computed in O(n) time.
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Efficient Computation of Planar Straight-Line Upward

Drawings *

Ashim Garg! and Roberto Tamassial

An upward drawing of a digraph is such that the edges are curves monotonically increasing in
the y-direction. Clearly, a digraph admits an upward drawing if and only if it is acyclic. Upward
drawings effectively visualize hierarchical relationships, such as partial orders, PERT-diagrams,
and is-a diagrams.

In this paper we investigate planar straight-line upward drawings of digraphs. We shall
denote with n the number of vertices of the digraph currently being considered. Previous results
are [1, 2]:

e A digraph admits a planar straight-line upward drawing if and only if it is a subgraph of
a planar st-digraph, i.e., a planar acyclic digraph with one source and one sink, joined by
an edge.

o A planar straight-line upward drawing of a planar st-digraph can be constructed in O(nlogn)
time. This algorithm assigns real coordinates to the vertices, and no bound on the area of
the drawing is provided.

o There exists a family of planar acyclic digraphs that require exponential area in any planar
straight-line upward drawing with vertices placed at grid points. Namely, for any positive
integer n there exists an n-vertex planar acyclic digraph G, such that any planar straight-
line upward drawing of G\, with integer vertex coordinates has area Q(v/2").

Our new results are summarized as follows:

e We give an optimal O(n)-time algorithm for constructing a planar straight-line upward
drawing of a planar st-digraph.

o We present the first NC' parallel algorithm for constructing planar straight-line upward
drawings. Our algorithm runs in time O(log®n) on a CRCW PRAM with n processors.

o We show that the exponential area lower bound for planar st-digraphs is tight and can be
efficiently attained. Namely, we argue that the drawings produced by the aforementioned
sequential and parallel algorithms have area O(c"), for some constant c.

¢ Both the parallel and sequential algorithms use integer arithmetic where the size of the
operands is O(A2/3), where A is the area of the drawing produced by the algorithm.

o We give a partial characterization of the area requirement of planar straight-line upward
drawings of maximal planar st-digraphs, based on the “nesting” of separating triangles.

Our algorithms are based on a technique that first contracts a large (€2(n)-size) subset of
edges, then recursively computes a drawing of the resulting subgraph, and finally restores the
contracted edges to yield a drawing of the original digraph.

*Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. Army
Research Office under grant DAAL03-91-G-0035, and by the Office of Naval Research and the Defense Advanced
Research Projects Agency under contract N00014-91-J-4052, ARPA order 8225.
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An Approach for Bend-Minimal Upward Drawing

Uli FoBBmeler * and Michael Kaufmann *

Besides minimizing the area of the embedding and edge lengths the minimization of the
number of bends is the measure of the quality of a planar embedding. The only provably optimal
algorithm for this criterion of Tamassia [6] reduces the problem to a min-cost-flow problem and
has therefore a quite high runtime of O(n? -logn). Several heuristics ([8, 11]) are must faster
but do not guarantee optimality.

Our approach has the goal to achieve optimality in a simple way for a certain class of
embeddings, namely upward-drawings. We show how to get optimal bounds on the number of
bends in linear time. Upward drawings are a popular way to display acyclic digraphs such that
all edges flow in the same direction (from bottom to top). Most algorithms for upward drawings
for planar graphs concern the minimization of the area, display of symmetries and isomorphisms.
The problem of rectilinear upward drawing does not arise in the literature so often (a variation
appears in [1]).

We define a rectilinear drawing to be upward if all segments of the edges are either horizontally
or upward, and for each node v with incoming/outgoing edges one incoming/outgoing edge is
incident to v by a vertical segment. As in [6], we first determine a topological embedding of the
graph, namely the direction each edge starts in and the sequence of bends on it. After this, a
linear standard compaction algorithm computes the final embedding of the graph in the grid.

Here we describe only the first step. We assume that the graph is a subgraph of a 4-planar
s-t-graph. Rectilinear upward drawings exists only for those graphs.

Basic Ideas

Before describing the algorithm we start with some observations. Let G = (V, L) be an
acyclic planar s-t graph with maximum degree 4 embedded in the plane. Every edge has two
directions: a start direction (the way how the edge leaves a node) and an end direction (the
way how the edge joins a node). Valid directions are only left, upward and right. If the start
direction and the finish direction of an edge are different, the edge gets one or two bends.

Our algorithm assigns appropriate directions for the start and end segments to all edges and
puts the fragments together by producing bends if necessary.

At any node there are at most two different ways of assigning the edges (i.e. the connections
to the neighbours) to the pins (left, upward, right and downward). If a node has e.g. two exits,
we can assign them either to the upper and right pin or to the left and upper pin. If we make
the wrong decision there may be difficulties to connect the remaining edges (in the example,

*Wilhelm-Schickard-Institut fir Informatik, Universitat Tibingen, Sand 13, 72076 Tubingen, Germany.
mk@informatik.uni-tuebingen.de
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the entries). Therefore it is important to determine an order how to do the assignment. Clearly
there is no problem with nodes with one or three entries (or exits respectively): In the former
case it has to be the lower (upper) pin, in the latter case the left, lower and right (right, upper
and left) pin in this order. Nodes of degree 3 or with two entries and two exits are called critical.
For critical nodes we always have two choices.

It is well known [4] that the incoming edges of each node v of a planar s-t-graph appear
consecutively around v, and so do the outgoing. This makes sense to say that an exit (entry) is
at the left or at the right of another.

Lemma 1. Let v be a node of degree 3 with two exit edges e; and e;, s.t. ¢; is left of ;. An
arbitrary assignment of e; to a pin increases the number of bends on e; by at most one. There
are no global effects on the embedding, i.e. the neighbours of v ’do not realize the difference’.
An analogous fact holds for critical nodes with two entries.

Proof: Let ¢ be the number of bends in the case that the left and upper pins are the exit
pins of v. We can simulate the other configuration (upper/right pins are exits) by turning the
edge out of the upper pin to the left and the edge out of the right pin upward using two new
bends. ¢

Lemma 2. Let v be a critical node of degree 4. For every pair (e;,¢;) of adjacent edges their
bendcosts increase by at most two if e; and e; are assigned arbitrarily to pins. The situation of
the neighbours is not changed thereby (no global effects).

As already seen computing start and end directions of an edge connecting two non-critical
nodes is easy. For an edge between a critical node v of degree 3 and a non-critical node Lemma
1 ensures that it is always good to choose the cheaper way to connect the non-critical node,
because the other entry (exit) pin of v requires at most one bend more than its neighbour pin to
connect any edge. Thus the chosen solution is not worse than the alternative. After this action
v becomes non-critical (its other entry (exit) pin has no more choice).

The case of an edge from a non-critical node u to a critical node v of degree 4 is more
complicated since three pins are influenced by fixing one; thus it is not good to apply the greedy
strategy here.

Definition. A critical node v is called maiden if less than two of its neighbours have already
fixed their connection to v. If the two alternatives of the connections to the fixed neighbours
have different costs, v is called decided and tie otherwise.

Note that a tie node always has degree 4. Lemma 2 tells us that if a node is decided, the
difference between the two alternatives is exactly 2 (two bends). With the argument above we
can choose the cheaper one in such cases, because the two other pins require at most two bends
more than in their optimal layout.

If there are no more decided nodes, i.e. all nodes still unfixed are tie, we compute a component
M C V of nodes such that every v € M is tie, M is connected in the underlying undirected
graph and |M] is maximal. We take a node on the border of M (i.e. connected with two nodes
¢ M ) and assign its pins in an arbitrary way. Thereby its neighbours in M become decided
and so on. Step by step the whole component can be fixed. Note that the state of the critical
nodes may change after each step.

The algorithm follows the description of the different cases above. The nodes are partitioned
into different classes (critical, non-critical,...) and the edge directions are assigned by local
inspections. The missing components at the end are handled as described above.
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The correctness of the algorithm follows from the fact that it only determines a connection,
if either the alternative cannot be better (non-critical nodes, decided nodes) or the alternatives
have been proved to be equal (components of tie nodes).

The Algorithm

At each step of the algorithm we have to determine the new state of at most four critical nodes.
This can be done in constant time. The first two phases (non-critical nodes and decided nodes)
are trivially linear. The only difficulty is to compute the components M in phase 3. But this
is easy, too: starting with an actual subset M’ of V' (at the beginning one tie node) we have to
test the neighbours of nodes in M’ if they are tie. Therefore we make at most 4| M| tests. All
components are disjoint (follows from the definition of a component), therefore we have to make
O(n) tests.

Theorem. The algorithm works in linear time.

Remarks

The class of rectilinear upward drawings considered here is a proper subclass of the class
commonly known as rectilinear upward drawings (each edge is represented by a monotonically
increasing curve). If we consider the differences between the two models, we find examples with
much more bends for our model. But it seems that these unnecessary bends can be removed very
easily. With small modifications our algorithm is a good heuristic for the problem of general
rectilinear upward drawing.
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Representations of Planar Graphs

C. Thomassen
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On Lattice Structures Induced by Orientations

Patrice Ossona de Mendez *

First we remark that an acyclic orientation of a rooted graph defines a distributive lattice
on its algebraic cocircuits (i.e. oriented cuts). Let vg be the root of an acyclic oriented graph G,
recall that an algebraic cocircuit of G may be expressed as a sum of vertex cocircuits with integer
coefficients. If we constrain the vy cocyle’s coefficient to be null, the decomposition is unique
and defines an injection from the cocircuits into a Z -free module. The total order of Z defines
a partial order on the algebraic cocircuits of G. This partial order is a distributive lattice : the
infimum and supremum operators are expressed in terms of min and max on the coefficients.
The Hasse diagram of a lattice is the oriented graph whose vertices are the elements of the lattice
and whose edges correspond to the immediate-sucessor relation. In the Hasse diagram of the
cocircuits’ lattice, two cocircuits are adjacent if and only if their distance is 1 in the Z -module.
By duality, the algebraic circuits of an oriented face-rooted planar graph have also a distributive
lattice structure. This circuits’ lattice seems to be more powerfull.

We shall first give an example where this circuits’ lattice structure, defined on the e-bipolar
orientations, leads to relevant geometric interpretations. Thatfor, we express a bijection between
e-bipolar orientations and algebraic circuits of a planar graph [11] [10].

Given a biconnected graph G and an oriented edge e = (s,t) of (¢, an e-bipolar orientation
of GG is an acyclic orientation of the edges of G having s as a unique source and ¢ as a unique
sink.

Bipolar orientations are closely related to connexity and planarity [5] [3] [10]. They have
been extensively used to perform graph drawing of planar graphs [8] [14] [4] [6] [8], upward
drawings [7] and testing graph planarity [9].

In the planar case, the angle graphe A(G) of G (also called radial graph) is defined as the
vertex /face adjacency graph related to an embedding of G. The e-bipolar orientations of G
are in bijection with the edge 2-colorations of A(G) satisfying local conditions. Given one such
2-coloration, the e-bipolar orientations are in bijection with the alternating cycles [12] [1] [5].

An edge 2-coloration of a bipartite graph naturally defines an orientation of the edges map-
ping alternating cycles into oriented circuits. The e-bipolar orientations of G are thus in bijection
with the circuits of an induced orientation of A(G). If the graph is 3-connected, each edge of
A(G) (except those incident to the vertices corresponding to vertices and faces of G incident to
e) belongs to a circuit [5]. Hence, the graph A(G) is totaly cyclic and, by duality, we may apply
the lattice construction defined previously : the set of the e-bipolar orientations of a 3-connected
plane graph G is a distributive lattice and its Hasse diagram is the adjacency graph of the e-
bipolar orientations of G (two orientations being adjacent if they differ by the orientation of a
unique edge). The connexity of the lattice implies the connexity of the adjacency graph of the
e-bipolar orientations of a 3-connected. This last result holds also for non planar 3-connected
graphs, as proved in [5] [10]. The minimum and maximum e-bipolar orientations of the lattice
have a very simple geometric interpretation exhibited by the left and the right path-packing
algorithms [4].

The e-bipolar orientations of a 3-connected graph G are in bijection with its st-upward
drawings. The Hasse diagram describes allowable local deformations of an upward drawing.
The connexity implies that any two upward drawings can be derived from one another through
successive local deformations.

*Ecole des Hautes Etudes en Sciences Sociales, 54 Boulevard Raspail — PARIS
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As an other application, we mention the lattice structure of the 3-trees decompositions
introduced by W. Schnyder and C. Thomassen. In this later case, the successor relation is related
to a circular permutation of the tree assignments among a triangle. This local transformation
generates the lattice and hence all the 3-trees decompositions [2].
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Complexity of Intersection Classes of Graphs
Jan Kratochvil * and Jifi Matousek *

Many of the well known and studied classes of intersection graphs of geometrical objects in
the plane possess nice properties, with respect to algorithmic complexity. Often such problems
like stable set, clique or chromatic number are polynomially solvable, and many of such classes
are recognizable in polynomial time (cf. interval graphs, circular arc graphs, circle graphs,
function graphs, etc.). On the other hand, already slightly more general classes are NP-hard
to recognize (e.g., intersection graphs of straight segments). Here we give a brief survey of the
complexity of the recognition problem.

If C is a class of sets (geometric objects in our case), then the class of intersection graphs of
C, denoted by IG(C), will be the class of all simple undirected graphs, isomorphic to graphs of
the form G = (V, E), where V.C C and e = uv € E iff unv # (). We call this V' a representation
of (the isomorphism class of) G.

We set (all the objects in consideration are planar)

STRING = IG({all simple curves})

CONV = [IG({all convex sets})
SEG = IG(

k— DIR(dy,...,d;) = IG({all segments with slopes among dy,...,dg}),

dy,...,d; real numbers

k—DIR = U{k—DIR(dl,...,dk); dy,...,dy real numbers}.

{all straight line segments})

(Note that in our setting, interval graphs = IG({segments of a line}), circular arc graphs =
IG({segments of a circle}), circle graphs = IG({chords of a circle}) and all of these classes can
be recognized in polynomial time).

Theorem 1 i) Recognition of STRING graphs is NP-hard [2], no upper bound is known. ii)
Recognition of CONV and SEG graphs is NP-hard [1, 2] and both these problems are in PSPACE
[5].

iii) For every fized k > 2, recognition of k-DIR graphs is NP-complete [4, 5].

iv) Recognition of k—DIR(dy, . ..,dy) graphs is NP-complete. [5] (note that here k and dy, . . ., dy
are part of the input).

v) Intersection graphs of isothetic rectangles (i.e., graphs of bozicity 2) are NP-complete to
recognize [4].

vi) Recognition of SEG graphs is polynomially equivalent to deciding solvability of a system of
strict polynomial inequalities in real numbers [5].

Unlike most decesion problems of similar nature, the recognition problems treated in The-
orem 1 are not known to be in NP (cv. parts i),ii)), or their membership in NP is nontrivial
(parts iii),iv)). The following results show why the usual ‘guess and check’ scheme of proving

NP-membership fails for STRING, SEG and k-DIR graphs.

*Prague, Czech Republic.
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Theorem 2 i) For every n, there is a graph G, € STRING on O(n*) vertices, such that in
each of its STRING-representations there are two curves which share at least 2" crossing points
[3].

ii) For every n, there is a graph G, € SEG on O(n?) vertices, such that in each of its
SEG-representations whose segments have integer endpoints, there is segment with an endpoint
coordinate of size at least 22" [5].

iii) For every n, there is a graph G, € 3 — DIR on O(n?) vertices, such that in each of
its 3-DIR-representations whose segments have integer endpoints, there is a segment with and
endpoint coordinate at least 2" [5].
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On Triangle Contact Graphs*

Hubert de Fraysseix, ! Patrice Ossona de Mendez ' and Pierre Rosenstiehl ?

Various representations of the same planar map are described below. Vertices, edges and
faces are alternatively represented by points, arcs or disks of the plane. By representation of a
planar map, it is understood that the circular order of the edges around each vertex is preserved.

An old problem of geometry consists of representing a planar map M by a collection of disks
matched with the vertices of M. These disks are disjoint except at contact points for some
pairs of them, the contacts representing the edges of M. The case of unconstrained disks is
merely solved by drawing at each vertex point v a closed curve surrounding v and half of the
edges arcs incident to v, in a tubular way. The difficulty starts when the disks have to respect
a prescribed shape. The famous case of circular disks, known as the Andrew-Thurston circle
packing Theorem [1], hits difficulties of numerical analysis; it has been improved to polynomial
complexity and generalized recently [7].

We are concerned here with triangular disks, such that each contact point is a vertex of
one triangle and belongs to the side of another one. This asymetry induces an orientation of
the contact, that is an orientation of the corresponding edge. Such an arrangement is called a

*This work was partially supported by the ESPRIT Basic Research Action Nr. 7141 (ALCOM II).
TCNRS, EHESS, 54 Boulevard Raspail, 75006, Paris, France.
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triangle contact system. So, it is obvious that to any triangle contact system 5 is associated
an oriented planar map M(S). We assume below that the orientation of the contact edge is
towards the triangle which gives a vertex in the contact.

A first result is that any planar map may be represented by a triangle contact system. The
result still holds if we impose a coloration to the triangles and the contacts in the following way :
the edges taken in clockwise order are colored respectively a,b and ¢ and each vertex is colored
as its opposite side; now a contact has to be between a vertex and a side of the same color.
An instance of this orientation constraint consists of forcing the triangles to have a common
oriented angle in the affine plane.

In the case of maximal planar maps M the coloration of the triangles is intrinsicaly imposed.
We introduce a coloration that partitions the edges not incident to the infinite face in three
oriented trees rooted on the frame, which are nothing else but the Schnyder trees [9] of a maximal
planar map. A 3-trees decomposition of Schnyder, or a Schnyder orientation, is defined as an
orientation of the edges besides the infinite face and a coloration of them in three colors a,b
and ¢ such that, at each vertex besides those of the infinite face, there is exactly three incoming
edges, colored respectively a,b and ¢ in clockwise order and such that the outgoing edges of
one color are grouped in the angle formed by the two incoming edges of the other colors. By
definition, each color defines a tree rooted on the infinite face.

The construction of a colored triangle contact system representing a planar map is achieved
in linear time and space (considering that arithmetic is performed in constant time over the
rational field).

A variation of our main result is that any maximal planar map may be represented by an
isosceles triangle contact system, each having an horizontal basis and the opposite vertex placed
below.

Let a T-shape in the (Ox,Oy) plane be a pair of an horizontal segment and a vertical one
placed below with a contact point. A T-contact system is a collection of T’s, all disjoints
except for contact points, consisting of an extreme point from one exactly and a side point
from the other. We show how a colored triangle contact system is transformed into a T-contact
system which provides very compact representations of planar graphs.

A rectilinear representation of a planar map represents each vertex by an horizontal
segment and each edge by a vertical segment incident to two horizontal vertex segment [8] [10].
In [8], each face of M is represented by a disk with a lowest vertex and a highest vertex segment,
a (Oy)-monotone left boundary and a (Oy)-monotone right boundary, this one being a straight
segment. Therefore, by extending each vertex segment on its right, up to the first met vertical
segment, the representation of M becomes a partition of a rectangle into rectangles : each
vertex is represented by an horizontal segment, each face by a vertical segment, and each edge
by a rectangular disk. Such a representation is called a tessalation representation of M. Any
2-connected planar map has a tessalation representation, as also explained by Tamassia and
Tollis [10].

Actually, all the tessalation representations of a 2-connected graph are obtained by using the
bipartite planar graph representation of the radial graph by contact segments as defined in [3]
[4].

We get here a tessalation representation of a maximal planar map from an interesting feature
of the triangle contact representation of a maximal planar map M, that is the representation
of the faces of M by triangles. In case each vertex triangle is isosceles with its basis parallel to
(Oz) and the opposite vertex placed below, each face is a triangle with each basis parallel to
(Oz) and the opposite vertex placed above. By drawing a vertical height segment of a proper
length at each triangular face, and extending the horizontal segments of the vertex bases we
obtain a tessalation representation of M.
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Characterisation and Construction of the Rectangular Dual of
a Graph

Simone Pimont * and Michel Terrenoire !

Introduction

Circuit placement consists in positionning rectangular blocks, defined by their area and inter-
connected by nets, on a rectangular surface to be minimized. An available strategy deals with
the rectangular dualization of a connectivity graph. We introduce the notion of polarity index,
then the concept of polarization, in order to characterize graphs with rectangular duals, and to
build an associated rectangular representation.

The three steps of placement

The minimization objective is approached by the construction of an initial placement (step 1),
such as the sum of the lengths of the connections is minimum. This initial placement is obtained
by means of a data analysis method (a factorial analysis on a distance matrix). It defines in R?
a set X of points corresponding to the blocks. From this placement, we define a connectivity
graph G(X) that resumes the proximity relations between the corresponding points. Then, by
dualization, a rectangular representation associated to G(X) is researched (step 2); that is to
say a dissection of a rectangle into rectangles for which G(X) describes the adjacency relations
among the rectangles. In step 3, an iterative construction of rectangular placements is processed,
whose objective is area minimization [FOU 89]. The related work focuses on step 2, particularly
on the characterization and on the construction of a rectangular graph.

A dualization process to construct a rectangular graph

We know that a necessary condition for a planar graph to admit a rectangular dual is that it is
triangular (every face, except the outer one, is a triangle) [KOZ 85, BHA 88]. So, we consider the
DELAUNAY graphe D(X) associated to the set X. However the above condition is not sufficient.
A triangular graph admits a rectangular dual if an only if it does not contain complex triangle
[KOZ 85]. Moreover, from a triangular graph, one can built more than one rectangular dual :
an edge between two nodes in the graph can correspond to a vertical or horizontal boundary in
the rectangular dual. To take into account this phenomenon, we introduce indices of polarity
for the edges [PIM 93]. The indices can take two values : horizontal or vertical. We define an
heuristic that assigns a polarity index to each edge of D(X) in order to construct a rectangular
dual. The elimination of the complex triangles is attempted at the same time. A program was
realized in PASCAL on PC, and in C on APOLLO. But the above polarity does not account by
itself of the rectangularization. So we introduce another concept that deepens this notion.

*Laboratoire d’Ingenierie des Systemes d’Information. pimont@lisisun.univ-lyon1.fr
tLaboratoire des methodes et analyses des systemes et des structures, Universite Claude Bernard LYON 1, 43

Boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex (FRANCE).
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Characterization of a dualizable graph : Polarizable graph

We consider a triangular graph H=(X,W). It admits a 4-completion graph Hc=(Xc,Wc), intro-
ducing the four external vertices : North, East, South, West (see [KOZ 85] for the definition of
4-completion).

¢ Notations :
- 7 is the set We without the four edges [N,0] [O,S] [S,E] [E,N]
- Il is a mapping of Z into the set {v,h} ("v” for vertical and "h” for horizontal)
- 6 is a mapping (named orientation) of Z into Xc : §([x,y]) is the origin of [x,y]
- He? is the oriented graph deduced from the graph (Xc,Z) by ¢
- a path p in Hc® is a v-path (resp. h-path) if II(w) = v (resp. h) for every edge w
corresponding to an arc of p
- Nz, Oz, Sz, F, are the set of the v-paths from N to x, the set of the h-paths from O to
x, the set of the v-paths from x to S, the set of the h-paths from x to E

e We suppose that for every x in X, (I[,6) satisfies :
-V [Nx] €Z,6([Nx])=Nand II([Nx])=v
-V [0,x] €7,6(0x]) =0 and II{[Ox]) = h
-V [Sx] € Z,6(]S,x]) = x and II([S,x]) = v
-V I[Ex] €7, §([Ex]) = x and II([E,x]) = h

e (II,0) is a polarization for Hec if for every x in X
- Ny, Oz, S, FE; are not empty
-YnéeN,, , VoeO,,Vse€ S, Ve I, thefoursets: nNo,nNs,nNeoNs,onN
e, s N e are reduced to x

Then we can define :

e A graph H is polarizable if it is triangular and if it admits a 4-completion graph He with
an associated polarization.

e For each node x, we define a local polarization for x, based on local properties about
the existence and the clockwize order of the oriented edges admitting x as endpoints.

We state two theorems [PIM 93] :

¢ Theorem 1 :
A triangular graph admits a rectangular dual if an only if it is polarizable.

¢ Theorem 2 :
For a triangular graph H with an associated triangular 4-completion He, (I1,6) is a polar-
ization if and only if (I[,8) is a local polarization for each vertex in Hc.

Conclusion

The concept of polarity index allows us to realize a program rather efficient over our examples;
but this approach is heuristic. The concept of polarizable graph, in view of the theorems 1 and
2, will enable the development of more efflicient algorithms for circuit placement. For example,
we propose to choose a couple candidate for polarization, and then to modify it using the local
properties associated to the node admissible polarization. Our theoretical and practical results
allow us to argue that the polarization and the associated properties give a pertinent framework
to elaborate efficient dualization algorithms.
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Two Algorithms for Finding Rectangular Duals of Planar
Graphs

Goos Kant* Xin He'

The problem of drawing a graph on the plane has received increasing attention due to a
large number of applications [3]. Examples include VLSI layout, algorithm animation, visual
languages and CASE tools. Vertices are usually represented by points and edges by curves. In
the design of floor planning of electronic chips and in architectural design, it is also common to
represent a graph G by a rectangular dual, defined as follows. A rectangular subdivision system
of a rectangle R is a partition of R into a set I' = {Ry, R, ..., R,} of non-overlapping rectangles
such that no four rectangles in I' meet at the same point. A rectangular dual of a planar graph
G = (V, F)is a rectangular subdivision system I' and a one-to-one correspondence f : V — T’
such that two vertices u and v are adjacent in G if and only if their corresponding rectangles
f(u) and f(v) share a common boundary. In the application of this representation, the vertices
of G represent circuit modules and the edges represent module adjacencies. A rectangular dual
provides a placement of the circuit modules that preserves the required adjacencies.

This problem was studied in [1, 2, KK89]. Bhasker and Sahni gave a linear time algorithm to
construct rectangular duals [2]. The algorithm is fairly complicated and requires many intriguing
procedures. The coordinates of the rectangular dual constructed by it are real numbers and bear
no meaningful relationship with the structure of the graph. This algorithm consists of two major
steps: (1) constructing a so-called regular edge labeling (REL) of G; and (2) constructing the
rectangular dual using this labeling. A simplification of step (2) is given in [5]. The coordinates of
the rectangular dual constructed by the algorithm in [5] are integers and carry clear combinatorial
meaning. However, the step (1) still relies on the complicated algorithm in [2]. (A parallel
implementation of this algorithm, working in O(logn log™ n) time with O(n) processors, is given

in [6].)

*Department of Computer Science Utrecht University Padualaan 14, 3584 CH Utrecht the Netherlands.
goos@cs.ruu.nl. Research supported by the ESPRIT Basic Research Actions program of the EC under contract
No. 7141 (project ALCOM II).

'Department of Computer Science State University of New York at Buffalo Buffalo, NY 14260 United States
of America. xinhe@cs.buffalo.edu. Research supported by National Science Foundation, grant number CCR-
9011214.
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In this paper we present two linear time algorithms for finding a regular edge labeling. The
two algorithms use totally different approaches and both are of independent interests. The first
algorithm is based on the edge contraction technique, which was also used for drawing triangular
planar graphs on a grid [10]. The second algorithm is based on the canonical ordering for 4-
connected planar triangular graphs. This technique extends the canonical ordering, which was
defined for triangular planar graphs [4] and triconnected planar graphs [5], to this class of graphs.
Another interesting representation of planar graphs is the visibility representation, which maps
vertices into horizotnal segments and edges into vertical segments [7, 11]. It turns out that the
canonical ordering also gives a reduction of a factor 2 in the width of the visbility representation
of 4-connected planar graphs.
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A More Compact Visibility Representation®

Goos Kantt

Introduction

The problem of “nicely” drawing a graph in the plane has received increasing attention due
to the large number of applications [1]. Examples include VLSI layout, algorithm animation,
visual languages and CASE tools. Several criteria to obtain a high aesthetic quality have been
established. Typically, vertices are represented by distinct points in a line or plane, and are
sometimes restricted to be grid points. (Alternatively, vertices are sometimes represented by
line segments.) Edges are often constrained to be drawn as straight lines or as a contiguous set
of line segments (e.g., when bends are allowed). The objective is to find a layout for a graph
that optimizes some cost function, such as area, minimum angle, number of bends, or satisfies
some other constraint (see [1] for an up to date overview).

One of the most beautiful ways for drawing G is by using a wvisibility representation. In
a visibility representation every vertex is mapped to a horizontal segment, and every edge
is mapped to a vertical line, only touching the two vertex segments of its endpoints. It is
clear that this leads to a nice and readable picture, and it therefore gains a lot of interest.
It has been applied in several industrial applications, for representing electrical diagrams and
schemas (Rosenstiehl, personal communication). Otten & Van Wijk [9] showed that every
planar graph admits such a representation, and a linear time algorithm for constructing it is
given by Rosenstiehl & Tarjan [7] (independently, Tamassia & Tollis [11] came up with the same
algorithm). The size of the required grid is (2n — 5) x (n — 1), with n the number of vertices.
The algorithm is based on a so called st-numbering: a numbering vy, ..., v, of the vertices such
that (v1,v,) € G and every vertex v; (1 < 7 < n) has neighbors v; and vy with j < ¢ < k. The
height of the drawing is the longest path from v; to v,, which has length at most n — 1. The
width of the drawing is the longest path in the dual graph, which is f— 1, where f is the number
of faces in G (by Euler’s formula: m < 3n —6 and f = m —n+ 2).

The algorithm is used in several drawing algorithms. We mention here the algorithm of
Tamassia & Tollis [12] for constructing an orthogonal drawing, and the work of Di Battista,
Tamassia & Tollis [3] for computing constrained visibility representations. Rosenstiehl & Tarjan
also discuss the open problems concerning the grid size of visibility representations [7]. The
requirement of using a small area seems to become a core area in the research field of graph
drawing, due to the important applications in VLSI-design and chip layout (e.g., see Kant [5]).

In this paper we show that every planar graph can be represented by a visibility representa-
tion on a grid of size at most (|3n|—3)x (n—1). This improves all previous bounds considerably.
An outline of the algorithm to achieve this is as follows. Assume the input graph G is triangu-
lated (otherwise a simple linear time algorithm can be applied to make it so [7]). Then we split
G into its 4-connected components, and construct the 4-block tree of G. We show that we can
do this in linear time for triangulated planar graphs, thereby improving the O(n - a(m,n)+ m)
time algorithm of Kanevsky et al. [4] for this special case. To each 4-connected component the
algorithm of Kant & He is applied, who showed that if the planar graph is 4-connected, then a

*This work was supported by ESPRIT Basic Research Action No. 7141 (project ALCOM II: Algorithms and
Complezity). Part of this work was done while visiting the Graph Theory workshop at the Bellairs Research
Institute of McGill University (Montreal), Feb. 12-19, 1993.

"Dept. of Computer Science, Utrecht University, Padualaan 14, 3584 CH Utrecht, the Netherlands.
goos@cs.ruu.nl

28



visibility representation of it can be constructed with grid size at most (n —1) X (n—1) [8]. The
representations of the 4-connected components are combined into one entire drawing, leading to

the desired width.
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Cone Visibility Graphs

Anna Lubiw*

Introduction

Two main ways of representing graphs are as intersection graphs and as visibility graphs using the
symmetric relations of intersection and visibility respectively. See [G] for a survey on intersection
graphs, and [O’R] for a survey on visibility graphs. A main difference between the two is that
visibility usually carries with it the notion of “blocking”; consequently the classes of graphs are
usually not closed under induced subgraphs, and are more difficult to characterize.

This work explores a class of directed graphs defined by means of an asymmetric relationship
which has some of the features of intersection and some of the features of visibility. Let P be
a set of points in the plane. With each point p let there be an ordered pair of rays r1(p), r2(p)
emanating from the point, determining the closed clockwise cone C'(p) going from r(p) to ro(p).
The cone visibility digraph of this configuration is a directed graph on vertex set P, with an edge
from vertex p; to vertex pq iff py is contained in the cone C'(p1). A digraph is a cone visibility
digraph if it has such a representation (for some choice of points and cones).

These are “visibility” graphs in the sense that the cone at a point determines which other
points it can “see”. There are two differences between this notion and previous definitions of
visibility graphs: one is that the relationship is asymmetric so the graphs are directed; another is
that there is no notion of “blocking”—whether one point sees a second point is independent of the
other points. There are two significant consequences of this: One is that cone visibility graphs are
closed under induced subgraphs—thus there might be be a forbidden subgraph characterization
of the class. Another consequence is that given a representation of a cone visibility graph, there
is an O(1) test for whether two points are joined by an edge—thus a cone visibility representation
of a graph is a very efficient representation.

Relationship to visibility graphs of polygons

Undirected cone visibility graphs can be obtained by symmetrizing the relationship: put an
undirected edge between p; and py iff py is in the cone C'(ps) and p; is in the cone C'(py). These
graphs have enough relation to visibility graphs of polygons that an understanding of them
may help us understand visibility graphs of polygons. Given a simple polygon in the plane, the
vertices and edges determine a cone system in the obvious way. The undirected cone visibility
graph contains all the edges of the visibility graph of the polygon, plus edges joining vertices
whose visibility in the polygon is blocked by an edge not incident with either vertex.

Relationship to dimension of posets

Whenever the rays r1(p) are all parallel (for all points p), and the rays rq(p) are all parallel,
and the angle between them is no more than 180°, then the resulting cone visibility digraph is
a poset. See [T] for information on posets. In particular, when all the rays r1(p) are parallel
to the positive y axis, and all the rays ry(p) are parallel to the positive z axis, the realizable
cone visibility digraphs are exactly the posets of dimension 2. A poset has dimension n if it

*Research supported by NSERC. Department of Computer Science, University of Waterloo, Waterloo, Ontario,
Canada, N2L 3G1. alubiw@uwaterloo.ca

30



can be realized in n-dimensional space as the visibility digraph of cones that are translates of
the positive quadrant, but cannot be so realized in a lower-dimensional space. The bipartite
graph 5, with vertices vy,...,v, and uy,...,u, and an edge from v; to u; iff + # j is a standard
example of a poset of dimension n. Though 5, for n > 2, does not have dimension 2, it is a
cone visibility digraph (in the plane).

Positive results

Among the undirected graphs that are cone visibility graphs are trees, cycles, complete graphs,
complete bipartite graphs, and bipartite permutation graphs. These results are not difficult and
are proved by giving constructions. Turning to digraphs, it is not difficult to show that trees
and cycles with arbitrary directions on the edges are cone visibility digraphs.

Negative results

This section is joint work with Jonathan F. Buss. One example of a graph that is not a cone
visibility digraph is the bipartite graph with vertex set V4 U V5 where |Vi| = 11 and V5 has a
vertex corresponding to each of the (131) triples of V; with edges to those three vertices of V3. To
prove that this graph is not a cone visibility digraph it suffices to prove that it is not possible to
arrange 11 points in the plane so that every triple can be separated from the remaining points by
a cone. We cannot have 6 points forming a convex 6-gon, otherwise the three odd points around
the 6-gon cannot be separated. We also cannot have three or more convex hulls in the onion
peeling of the point set, otherwise three points of the middle convex hull cannot be separated.
But with 11 or more points, we cannot avoid both these situations.

Open questions

Characterize cone visibility digraphs and/or find a good recognition algorithm.
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Circle Packing Representations in Polynomial Time

Bojan Mohar*

The Andreev-Koebe-Thurston [1, 2, 3, 5] circle packing theorem is generalized and improved
in two ways. Simultaneous circle packing representations of the map and its dual map are
obtained such that any two edges dual to each other cross at the right angle. The necessary
and sufficient condition for a map to have such a primal-dual circle packing representation is
that its universal cover graph is 3-connected. A polynomial time algorithm is obtained that
given such a map M and a rational number ¢ > 0 finds an e-approximation for the primal-dual
circle packing representation of M. In particular, there is a polynomial time algorithm that
produces simultaneous geodesic line convex drawings of a given map and its dual in a surface
with constant curvature, so that only edges dual to each other cross.

In combination with graph embedding algorithms [4], these results give rise to efficient algo-
rithms for drawing graphs on general surfaces.
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Obstructions for Embedding Extension Problems

Bojan Mohar,” Martin Juvan™ and Joze Marinéek *

Kuratowski’s theorem gives rise to linear time algorithms which for a given graph determine
whether the graph is planar (Hopcroft and Tarjan [7], Booth and Lueker [2], Fraysseix and
Rosenstiehl [FR91]). The extensions of original algorithms also produce an embedding [4], or
find a Kuratowski subgraph [24].

The result of Kuratowski has been generalized to non-orientable surfaces by Archdeacon
and Huneke [2] and in a much more general setting to arbitrary surfaces by Robertson and
Seymour [18]. They proved that for every fixed surface there is a finite set of obstructions for
embeddability of graphs in this surface.
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Although the genus problem is NP-hard [6], for every fixed surface there is a polynomial
time algorithm which checks if a given graph can be embedded in the surface (Filotti et al. [5],
Robertson and Seymour [18, 22], O(n?) algorithm using graph minors, O(n?logn) improvement
by B. Reed [19, 20, 21]). A constructive version in [1] has running time O(n!?).

Let K C (G, and suppose that we are given a 2—cell embedding of K into a (closed) surface X.
The embedding extension problem asks whether it is possible to extend the given embedding of K
to an embedding of . In our talk we will briefly report on our results concerning the embedding
extension problem. We are able to determine in linear time if the given 2-cell embedding of K
can be extended to (&. In case of a positive answer, such an extension is exhibited. Otherwise, an
obstruction is given. Obstructions are not always small but they can be completely characterized.
This enables us to get:

(a) a relatively short proof (in total approx. 100 pages) of the Kuratowski’s Theorem for
general surfaces, and

(b) a linear time algorithm that for every fixed surface S solves the embeddability problem
in 5. In case of the positive answer, the algorithm also exhibits an embedding, in case of the
negative answer, we get a small obstruction — a subgraph which can not be embedded in S and
whose number of branches is small.

In [13], a linear time algorithm for embedding graphs in the projective plane is given.

[14] presents the solution to the embedding extension problems in a disk or a cylinder. In [15],
Mébius band and the projective plane obstructions are characterized and linear time algorithms
for their discovery are presented.

The essential work is [16] Let B be a bridge of K in G. It is shown that B contains a
nice (small up to a small number of almost disjoint millipedes) subgraph B such that if K is
2-cell embedded in some surface and F is a face of K, then B admits exactly the same types of
embeddings in F' as B. Moreover, such a universal obstruction B can be constructed in linear
time.

In [12] a special case of the embedding extension problem is solved when we are restricted
for every bridge of K in G to have at most two essentially different embeddings.

The paper [10] contains a linear time algorithm for embedding graphs in the torus. It is
supported by two other works [8, 9]. This is the other essential step of our work.

In [17], the generalization of the Kuratowski Theorem is proved.

Finally, [11] presents a linear time algorithm for embedding graphs in a general (fixed)
surface.
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Automorphisms and Genus on Generalised Maps

Antoine Bergey *

Various combinatorial data structures were suggested to encode topological maps (2-cell
embedding of a connected graph in a compact, connected, orientable surface without boundary).
One of them is combinatorial map (or simply 2-maps), wich are triples C' = (B, a,0) such that
a and o are two permutations on the set B [3, 1]. The cycles of a are called the edges of the
2-map : the cycles of o, the vertices ; and those of ao, the faces of the 2-map C. Thus we can
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define, in a purely combinatorial way, the genus of a 2-map. We will say that a 2-map is planar
if its genus is equal to 0.

An automorphism on a 2-map C' = (B, a,0) consists of a permutation ¢ such ¢a = a¢ and
¢o = o¢. Let €' be a combinatorial map encoding a topological map C. We can associate with
each orientation-preserving automorphism of C, an automorphism ¢ on €. Many analogues
of well-known results in Riemann surfaces theory were proven concerning automorphisms on
combinatorial maps [1]. In particular, it can be shown that an automorphism on a planar map
has two (and only two) fixed points [2].

Lienhard suggested n-maps and n-G-maps (a set B together with n or n + 1 permutations
on B) as extensions of combinatorial maps in order to describe subdivisions of orientable or
non-orientable spaces of dimension n, possibly with boundary [4, 5].

G = (B,ag,0q ...,05)1s a n-G-map if : permutations a; (¢ < n) and products oo (|t —j| < 2)
are involutions without fixed points ; «,, is an involution ; G is connected.
A connected component of G; = (B, aqg...,q;—1,041...,0,) is called an i-cell.

Let us define an automorphism on a n-G-map or n-map G in the following way : a per-
mutation ¢ wich commutes with every permutation of GG is called an automorphism of G. We
consider automorphisms on n-G-maps without boundary.

We show that if an n-G-map G is orientable, then the automorphisms of G fall into two
classes (® and @) of automorphisms : orientation-preserving automorphisms (®) and orientation-

reversing automorphisms (®). Obviously, ® is a subgroup of the group of the automorphisms of
G.

Let G be the n-map associated with an orientable n-G-map G. As n-maps describe only
orientable subdivisions, we can associate in a one-to-one manner an orientation-preserving au-
tomorphism of G to each automorphism of G.

Therefore, in 2 dimensions, more information about the symmetry of a topological map is
given using 2-G-maps instead of 2-maps encoding.

o We can express any orientation-reversing symmetry of a topological map ' as an automor-
phism of the associated 2-G-map G'. For example : when (' is a planar map, automorphisms
of GG are associated with symmetries around the center of the sphere or equatorial planes.

¢ As we can use a 2-G-map G to encode graph drawings on non-orientable surfaces, we can
also treat symmetries of such embeddings as an automorphism of G.

Let ¢ be an automorphism of a 2-G-map G. We show that there are two classes of cells
that are fixed by ¢, let us call them even and odd-cells respectively. Let us consider relations
between genus, orientability of G’ and the number of cells left fixed by ¢.

When G is orientable, ¢ has only odd-cells if it is an orientation-reversing automorphism, even-
cells if it preserves the orientation.

If the genus of G is equal to 0, then ¢ has two even-cells if GG is orientable, one if G is not
orientable.

We show that every odd-cell is adjacent exactly to two odd-cells. Thus, we can define ovals of
odd-cells. These adjacency relations implie that :

e each oval contains an even number of odd-cells ;

o we have n, < ny+ ne, ne < ny+ ny, ny < ny, + ne, where ne, n,, and ny are the numbers
of odd-edges, odd-faces, and odd-vertices respectively.
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If there are at least one odd-cell, then the automorphism ¢ is an involution. When G is orientable,
these ovals can be considered as the intersection of the symmetry plane (associated with ¢) with
the surface on which the graph is drawn. Moreover, when (' is orientable, we find an analogue
to Harnack’s theorem. More precisely, we have

92”0—1

where ¢ is the genus of G and n, the number of ovals. This is shown by exhibiting G’, a
2-G-submap of GG, wich is of genus n, — 1.

Let C be a planar topological map C encoded by a 2-G-map G and let O be an oval of an
automorphism on G. Splitting the topological map along O let us get symmetrical drawings in
the following way : we divide C along the cells of O into two parts C'T and C'* ; we draw C'T on
the top-side of the sphere (each cell of O lying on the equatorial plane) ; then the bottom-side
of the sphere is symmetrical in relation to the equatorial plane.

In other algorithms, these splittings may be usefull in order to save space or time.
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Upward Drawing on Surfaces

Ivan Rival *

Extended Abstract

The modern theoretical computer science literature is preoccupied with efficient data structures
to code and store ordered sets. Among these data structures, graphical ones play a decisive
role, especially in decision-making problems. Choices must be made from among alternatives
ranked hierarchically according to precedence or preference. And, loosely speaking, graphical
data structures must be drawn in order that they may be easily read.

Besides the well known metaphors inspired by layout design, project management, and
database design, several unexpected application areas are driving our recent investigations:
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(i) Ice flows consisting of vast areas of ice, largely of recent vintage (a few years old), inter-
spersed with old ice (many years old) pose a profound danger to boats and oil-rigs, indeed,
for any man-made vessel at all. Ocean currents, wind, and temperature affect the icebergs’
direction of flow, changing position and velocity substantially — even within hours.

(i7) The increasing use of personal workstations has led to program visualization techniques in
order to grasp complex computer programs. Fisheye techniques provide one such tool to
elucidate the structure and behaviour of computer programs. That, in turn, can simplify,
and hence advance the effectiveness of programming.

(i77) Inspired by the problem to unify the known forces, quantum topology combines space and
time to produce a 4-dimensional picture of the world. In this rarified air, current research
in physics meets up with classical mathematics.

From the viewpoint of graph drawing there is a common thread to these themes. Fach
involves an ordered set (whether it consists of moving icebergs, hierarchies of subroutines, or
light cones) and each views the ordered set monotonically on a two-dimensional surface. We
are led ineluctably to study upward drawings of ordered sets with vertices drawn on an oriented
surface (usually in 3-space) whose edges are monotonice paths with respect to the z-axis. The
tools of topological graph theory and the traditional machinery of differential topology, may be
brought to bear.

Here are some of the highlights of our work.

1. Fvery triangle-free graph has a planar upward drawing.[Kisielewicz/Rival 1993]

2. Fvery ordered set has an upward drawing on a vertical multiple-holed torus.
[Nowakowski/Rival 1989]

3. The order genus of an ordered set is an invariant among all of the orientations of its
covering graph.Ewacha/Li/Rival 1991]

4. Fvery bounded ordered set of genus g has an upward drawing on a surface with precisely g
saddlepoints. [Musin/Rival/Tarasov 1993]

These results, in turn, create new algorithmic considerations. For instance, as the covering
graph of an ordered is triangle-free, we must replace the commonplace reliance on triangula-
tion by an analogous, but different, subdivision: pentangulation. They inspire intriguing (and
disarmingly simple) questions, too: does every ordered set have a cellular upward drawing on a
surface?
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Tessalation and Visibility Representations of Maps on the
Torus

Bojan Mohar* and Pierre Rosenstiehl *

It is shown that maps on the torus whose universal covering graph is 2-connected behave
very much like 2-connected plane graphs. In particular, the results on visibility, tessalation
representations and upward drawings of plane graphs are generalized to maps on the torus.

A Simple Construction of High Representativity
Triangulations

Teresa M. Przytycka * and Jézef H. Przytycki |

One natural way of drawing a topological surface is to start with a drawing of its triangu-
lation. Thus one can ask which triangulation of a given surface leads to a nice drawing of the
surface. The best candidate for such a triangulation is a triangulation in which all vertices are
“evenly distributed” over the surface. Such a triangulation can be achieved by maximizing a
parameter of surface triangulation called representativity.

The concept of the representativity of a graph embedding was introduced by Robertson and
Seymour [5]. Robertson and Vitray [6] consider as a major effect of high representativity the fact
that it makes the embedding “highly locally planar” and that “the locally Euclidean property
of the surface is mirrored by the locally planar property of the embedded graph”.

Formally, the representativity of a graph GG embedded in a surface X is equal to the length
of the shortest noncontractible facial walk (a walk of type vy, f1,v2, fa,. .., vk, fi, v1, where for
any ¢ v; is a vertex, f; is a face of the graph and v;,v;41 are vertices of f;). In particular, the
representativity of a surface triangulation is equal to the length of the shortest noncontractible
cycle of the triangulation. (Recall that a cycle, C', on a surface ¥ is called noncontractible if
none of the components of ¥ — C' is homeomorphic to an open disc.)

It is not known what is the highest possible representativity that can be achieved when tri-
angulating a genus ¢ surface, ¥,, with an n-vertex graph. Joan Hutchinson [2] showed that the
representativity of such a triangulation is at most ¢’\/n/glog g, where ¢ is a constant. Hutchin-
son gave a simple construction that allows to triangulate ¥, with representativity ©(y/n/g). This
result was improved to Q(y/n/glog* ¢)([3]) and further Q(\/n/g+/loglog g) ([4]) using a covering

spaces technique.
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In this paper, we improve substantially the previously known lower bound for the repre-
sentativity of such a triangulation and give an efficient algorithm for its construction. More
precisely, we present an O(max(g?, n))-time algorithm that, for given g and n such that g > 1
and n > ’glog g, constructs an n-vertex triangulation of a genus ¢ surface, X, such that the
representativity of the triangulation is at least ¢\/n/gy/logg (where ¢, ¢’ are constants). We
extend our result to nonorientable surfaces and surfaces with boundary. In the later case we
replace the genus, ¢, of the surface with parameter ¢’ = g + d/2, where d is the number of
boundary components.

In our construction we use a relation between cubic graphs and orientable surfaces without
boundary. Namely, given a 2/N-vertex cubic graph, GGy, one can construct an orientable surface
¥, where g = N +1. In fact, ¥, can be taken as a tubular neighborhood of (75 embedded in R®.
Then we can move G so that it is embedded in X, and thus all cycles of GGy are noncontractible
in 20.

Let £ be the girth (the length of the shortest cycle) of Gy. Given the embedding of a cubic
graph G as described above, we construct a triangulation of ¥, by adding new vertices in
such a way that no noncontractible cycle shorter than ¢ is introduced. The total number of
vertices added is N, = O(N(). The construction takes O(N,) time. Thus to maximize the
representativity of the triangulation obtained using this construction we should start with Gy
being a (3,()—cage, where a (3, ()-cage is a cubic graph with girth ¢ and the smallest possible
number of vertices. Unfortunately, there is no eflicient algorithm that, for a given value ¢,
constructs a (3, ()-cage. However, by a theorem of Erdds and Sachs [1], for any integer ¢, there
exists a cubic graph of girth £ and O(2°) vertices.

Based on the proof of the theorem of Erdos and Sachs we give an O(N?)-time algorithm to
construct a cubic graph with 2N vertices and girth O(log N). This gives us, for any N > 1,
an Ng-vertex triangulation, T}, of ¥, such that representativity of T}, is ©(log N) and N, =
O(Nlog N). Thus the lower bound claimed is achieved for n = N,. The next step is to extend
the lower bound to all values of n. We achieve this by appropriate subdivision of the triangulation
T,. Finally, we show an extension of the construction to nonorientable surfaces and surfaces
with boundary. We achieve this by cutting some handles of the surface X, along edges of the
T74n- To obtain triangulations of nonorientable surfaces we cap off at most two of the holes
created in the above construction with (triangulated) Mébius bands.
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On a Visibility Representation for Graphs in Three
Dimensions

Prosenjit Bose,* Hazel Everett,! Sdndor Fekete,! Anna Lubiw,® Henk Meijer,T
Kathleen Romanik,!! Tom Shermer** and Sue Whitesides'?

Visibility representations of graphs map vertices to sets in Fuclidean space and express
edges as visibility relations between these sets. Application areas such as VLSI wire routing
and circuit board layout have stimulated research on visibility representations where the
sets belong to R%. Here, motivated by the emerging research area of graph drawing, we
study a 3-dimensional visibility representation.

Consider an arrangement of closed, disjoint rectangles in R>® such that the planes deter-
mined by the rectangles are perpendicular to the z (vertical) direction, and the sides of the
rectangles are parallel to the 2 or y (horizontal) directions. A vertical thick line of sight
between two rectangles R; and R; is a closed cylinder €' of non-zero length and radius such
that the ends of (' are contained in R; and R;, the axis of C' is parallel to the » direction,
and the intersection of ' with any other rectangle in the arrangement is empty. We call
such an arrangement a B-representation of an abstract graph G = (V, F) if, and only if,

the following hold:

e there exists a 1-1 onto correspondence between the rectangles and the vertices, and

e vertices v; and v; are adjacent if, and only if, their corresponding rectangles R; and
R; have a vertical thick line of sight between them.

Our main results are as follows. All planar graphs are B-representable, as are many non-
planar graphs. In particular, K,,, is B-representable for all m and n, and K, is B-
representable for values of n < 20. However, K, is not B-representable for n > 103. We
have also considered variants of B-representations.

B-representability of planar graphs: The proof that all planar graphs are B-representable
has two main ingredients. The first is the result due independently to Wismath[W] and
to Tamassia and Tollis[TT] that any 2-connected planar graph has what [TT] calls an e-
visibility representation. (Vertices correspond to closed, disjoint, horizontal line segments
in the plane, and two vertices are adjacent in the graph if, and only if, their corresponding
segments can be joined by a vertical band of non-zero width (and length) with ends lying
in the segments.) The second ingredient is the use of the 3rd dimension to deal with cut
vertices. This is similar to an idea of [W] for obtaining a visibility representation for all
planar graphs by rectangles in R? that can look in both 2 and y directions.
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B-representability of K, ,, and K,: K, , has a simple, general B-representation for all
m, n, but this is not the case for K,,. While we have constructed an explicit B-representation
for K99, and hence for K,, n < 20, we have also shown that K, has no B-representation
for n > 103. We conjecture that n = 20 is close to the correct bound.

Non-B-representability of K, for n > 103: In any B-representation of a complete graph,
no two rectangles can lie on the same z=constant plane. Also, if K, has a B-representation,
then it has one in which no two rectangles have sides at the same & or y=constant values.
In other words, K, can be represented by rectangles that can be linearly ordered by z
coordinate and also, by z coordinate of left side, 2 coordinate of right side, y coordinate
of top side and y coordinate of bottom side. To obtain the result, we use such orderings
together with repeated application of the following result of Erdés and Szekeres[ES]:

For any positive integers j and k, any sequence of more than jk distinct integers has a (not
necessarily contiguous) increasing subsequence of length j + 1 or decreasing subsequence of

length k + 1.

Variations: Our representation of Koo can be carried out with squares, provided the squares
need not have the same area. Representations by discs, unit squares, and squares for com-
plete graphs and for complete bipartite graphs have been considered.

Acknowledgment: Our study of B-representations began at Bellairs Research Institute
of McGill University during the Workshop on Visibility Representations organized by S.
Whitesides and J. Hutchinson, February 12-19, 1993. We are grateful to the other conference
participants Joan Hutchinson, Goos Kant, Marc van Kreveld, Beppe Liotta, Steve Skiena,
Roberto Tamassia, Yanni Tollis, and Godfried Toussaint.
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On Graph Drawings with Smallest Number of Faces

*

Jianer Chen, * Saroja P. Kanchi, * and Jonathan L. Gross’

We report here our recent progress in the study of graph drawings with the smallest number
of faces, or equivalently, graph embeddings with the largest genus. Formally, the mazimum
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genus ypr(G) of a connected graph G is defined to be the largest integer k such that there
exists a cellular embedding of ¢ into the orientable surface of genus k.

Since the introductory investigation of maximum genus by Nordhaus, Stewart, and White
[5], there has been considerable interest in maximum genus embeddings of graphs. Two out-
standing results in this research are Xuong’s characterization of maximum genus embedding
in terms of components of the complements of spanning trees [9] and a first polynomial-time
algorithm for computing maximum genus developed by Furst, Gross, and McGeoch [3].

Recent investigations have focused on deriving a lower bound on the maximum genus of
graphs. Skoviera [8] showed that the maximum genus of a 2-connected graph of diameter 2
is at least [3(G)/2] — 2. More recently, Chen and Gross [1] proved that the maximum genus
of a 2-connected simplicial graph or of a 3-connected graph is at least Q(log 5(G')). The last
result was further improved by Chen, Gross, and Rieper [2] who proved that the maximum
genus of a 2-connected simplicial graph G is at least 3(G)/8. A related topic, the upper-
embeddability of graphs, has also been studied extensively in literature [5, 4, 6, 7, 11, 8, 10].

In this paper, we prove that vy (G) > 5(G)/4 for a simplicial graph G, and we show that
our bound is tight. Our proof selectively sharpens Xuong’s characterization of the maximum
genus embedding. We first show that every 3-regular simplicial graph ¢ has a Xuong tree T’
such that every odd component in the Xuong co-tree GG —T has only one edge. This enables
us to compare the number of odd components to the number of even components in the
Xuong co-tree and thereby arrive at an upper bound for the number of odd components.
This upper bound is used to obtain the desired lower bound for the maximum genus of
a 3-regular simplicial graph. Finally, the restriction of 3-regularity is removed by using a
theorem of Chen and Gross concerning edge-contractions.

Our result on the lower bound of maximum genus has several interesting consequences to
the average genus of graphs. Using techniques developed by Chen and Gross, we show that
the average genus of a simplicial graph is at least 1/8 of its cycle rank. This improves a
result by Chen, Gross and Rieper [2] that the average genus of a 2-connected simplicial
graph is at least 1/16 of its cycle rank. Moreover, our result implies that the average genus
of a simplicial graph is at least 1/4 of its maximum genus, thereby complementing another
result of Chen, Gross and Rieper [2] that for a 3-regular graph, the average genus is at least
half its maximum genus.
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A Flow Model of Low Complexity for Twisting a Layout

Marc Bousset *

We deal with (s, ?)-bipolar orientations of a 2-connected plane graph G, taking local orien-
tation constraints into account. A laterality constraint links the orientations of two edges
adjacent in the circular order around a vertex in the following way :

¢ an extremal constraint on an angle implies that the two edges adjacent to that angle
are either both outgoing or both incoming,

¢ a lateral constraint on an angle implies that among the two edges adjacent to that
angle, one is incoming and one is outgoing.

Our approach is based on the theory of the (s,?)-bipolar marking of the angle graph G (a
special 2-colour marking of the edges of ) introduced by P. Rosenstiehl. There is a one-
to-one correspondance between (s,t)-bipolar markings of G and (s,t)-bipolar orientations

of G.

The local invariants on the colours around each vertex and around each face allow us to
translate the problem into mathematical programming, namely into a flow model. The
network is built upon the angle graph @, to which we add two nodes § and T'. We also add
edges from S to each vertex of G (V-edges) and from each face of G to T' (F-edges). The
capacities of the angles are 1 (when there are no constraints). The capacities of the V-edges
are 2 except for (.9, s) and (9, ) for which they are zero. The capacities of each F-edge (f,T')
is equal to the degree of the face f minus 2. A maximum flow in this network saturates
both the V-edges and the I-edges, and the flow through each angle gives an (s, t)-bipolar
marking.

The integer capacities around .5 and T" and the unit capacities elsewhere allow us to extend
a result of R. E. Tarjan, that is : a drastic reduction of the complexity of the maximum
flow algorithm down to O(my/m) for Dinic’s algorithm.

Laterality constraints are enforced by modifying the capacities on the angles. When no
(s,t)-bipolar marking consistant with the constraints exists, the maximum flow does not

*C.A.M.S. - E.H.E.S.S, Paris. bousset@dassault-avion.fr
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saturate all the V-edges and the F-edges. It is then possible to identify a set of angles Z so
that relaxing the constraints on all angles of 7 guarantees the existence of an (s, t)-bipolar
marking compatible with the remaining constraints.

The method developed here has been implemented in an industrial context in a CAD system
for generating layouts of electrical networks, and also in the TWIST software, created for

the ALCOM project.
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Convex and non-Convex Cost Functions*
of Orthogonal Representations
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An orthogonal drawing of a graph is a planar drawing such that all the edges are polygonal
chains of horizontal and vertical segments. Finding the planar embedding of a planar graph
such that its orthogonal drawing has the minimum number of bends is a fundamental open
problem in graph drawing. We provide the first partial solution to the problem. First, we give
a new combinatorial characterization of orthogonal representations of 2-connected graphs
based on the concept of spirality and we relate the number of bends of representations to the
spirality by means of the concept of cost function. Second we exploit the behaviour of cost
functions associated to orthogonal representations of components of 2-connected graphs.
Third we use the characterization to find in polynomial time the planar embedding of a
series-parallel graph and of a 2-connected 3-planar graph such that its orthogonal drawing
has the minimum number of bends.

In this talk we give a new combinatorial characterization of orthogonal representations of
2-connected graphs and use the results to provide a first partial solution to the problem of
finding the planar embedding of a planar graph such that its of orthogonal drawing has the
minimum number of bends.

First, we introduce the new concept of spirality, that is a measure of how an orthogonal
drawing is “rolled up”, giving a combinatorial characterization that relates the number of
bends of an orthogonal drawing and its spirality by means of the concept of cost function.

Second we study the behaviour of cost functions of 2-connected graphs, with the following
results:

o Cost functions of components of 3-planar graphs are non decreasing convex piecewice
linear functions.

o Cost functions of components of 4-planar graphs are piecewice linear functions, but
possibly concave (“w”-shape).

Third, from the above results, we solve in polynomial time the problem of finding the planar
embedding that leads to the orthogonal drawing with the minimum number of bends for
3-planar graphs and series-parallel graphs.

Minimizing the number of bends of orthogonal representations is a classical problem of
graph drawing.

Tamassia [9] has proposed a very elegant representation algorithm that solves the prob-
lem in polynomial time for graphs with a fixed embedding. The algorithm is based on a
combinatorial characterization that allows to map the problem into a min-cost-flow one.
Linear time heuristics for the same problem have been proposed by Tamassia and Tollis
in [12, 13]. Such heuristics guarantee at most 2n + 4 bends for a biconnected graph with n
vertices. Recently, Kant [7] has proposed efficient heuristics with better bounds for tricon-
nected 4-planar graphs and general 3-planar graphs (a graph is k-planar if it is planar and
each vertex has degree at most k). Tamassia, Tollis and Vitter [14] have given lower bounds
for the problem and the first parallel algorithm. A brief survey on orthogonal drawings is
in [10].

However, all the above papers work within a fixed embedding, where it can be seen that
the choice of the embedding can deeply affect the results obtained by the algorithms. The
problem of finding the planar embedding that leads to the minimum number of bends is
not known to be NP-hard or not and has been explicitely mentioned as open by several
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authors. Although the problem is quite natural there are only a few contributions on this
topic, because of the exponential number of embeddings a planar graph (in general) has.

Our technique exploits both the properties of the spirality and a variation of the SPQR
trees [2, 3]: a data structure that implicitely represents all the planar embeddings of a
planar graph. Moreover we adopt a slight modification of the algorithm of Tamassia [9] for
computing orthogonal representation of triconnected components.

Observe that series-parallel graphs arise in a variety of problems such as scheduling, elec-
trical networks, data-flow analysis, database logic programs, and circuit layout. Also, they
play a very special role in planarity problems [2, 3].
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Topology and Geometry of Planar Triangular Graphs *

Giuseppe Di Battista I and Luca Vismara ?

The contribution of this talk is twofold. On one side, we give several topological results:
(1) a new operation to construct plane triangular graphs from a triangle graph; (2) a
basic lemma about the planarity of all the drawings of plane triangular graphs; (3) a
new ordering for the vertices of plane triangular graphs. On the other side, we give a
characterization of all the planar drawings of a triangular graph by means of a system of
equations and inequalities relating its angles, solving a problem that is explicitely mentioned
as open by several authors; we also discuss minimality properties of the characterization.
The characterization can be used: (1) to decide in linear time whether a given distribution
of angles between the edges of a planar triangular graph can result in a planar drawing;
(2) to tackle the problem of maximizing the minimum angle of the drawing of a planar
triangular graph by studying the solution-space of a non-linear optimization problem; (3)
to give a characterization of the planar drawings of a triconnected graph through a system
of equations and inequalities relating its angles; (4) to give a characterization of Delaunay
triangulations through a system of equations and inequalities relating its angles; (5) to give
a characterization of all the planar drawings of a triangular graph through a system of
equations and inequalities relating the length of its edges; in turn, this result allows to give
a new characterization of the disc packing representations of planar triangular graphs.

Introduction

Planar straight-line drawings of planar graphs are a classical topic of the graph drawing
field (surveys on graph drawing can be found in [18, 7]).

A classical result established by Wagner, Fary, Stein, and Steinitz shows that every planar
graph has a planar straight-line drawing [17, 22, 8, 16].

A grid drawing is a drawing in which the vertices have integer coordinates. Independently,
de Fraysseix, Pach, and Pollak [2, 3], and Schnyder [15] have shown that every n-vertex
planar graph has a planar straight-line grid drawing with O(n?) area.

Straight-line drawings have also been studied with the constraint for all the faces to be
represented by convex polygons (convex drawings) [19, 20]. Tutte shows that, for a tricon-
nected graph, convex drawings can be constructed by solving a system of linear equations.
Recently, Kant has shown an algorithm to construct grid convex drawings with quadratic
area [11].

In the research on planar straight-line drawings a very special role is played by angles
between the segments that compose the drawing. In particular, Vijayan [21] studied angle
graphs. An angle graph is a planar embedded graph in which the angles between successive
edges incident at vertices are given. The problem of the existence of a planar straight-line

*Research supported in part by ESPRIT Basic Research Action No. 7141 (ALCOM II) by Progetto Finalizzato
Sistemi Informatici e Calcolo Parallelo of the Italian National Research Council (CNR).
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drawing of an angle graph that preserves the angles is tackled and partial characterization
results are shown.

In [9] the problem of constructing straight-line drawings of graphs with large angles is
studied. It is shown that it is always possible to construct a drawing whose smallest angle
between the edges incident at a vertex is O(1/d?), where d is the maximum vertex degree
of the graph. Other results are given for particular classes of graphs. For planar graphs the
bound is improved to O(1/d); however, in general, the obtained drawing is non-planar.

Malitz and Papakostas [12] have shown that it is always possible to construct a planar
straight-line drawing of a planar graph whose smallest angle is O(a?), where 0 < a <
1. The bound that is presented is only existential; in fact they exploits a disc packing
representation of the graph. In a disc packing representation (1) each vertex is a disc, (2) two
vertices are adjacent in the graph if and only if their discs are tangent, and (3) the interiors
of the discs are pairwise disjoint. No polynomial algorithm is known to construct a disc
packing representation. Recently, Mohar [13] has shown for this problem an approximation
algorithm.

A fundamental tool for several algorithms and characterizations described above are planar
triangular graphs. For instance the algorithm by de Fraysseix et al. and the algorithm
by Schnyder have an intermediate step in which the given planar graph is triangulated.
Also, planar triangular graphs play a very special role in a number of problems arising
in Computational Geometry. However, as far as we know, characterizing angles of planar
triangular graphs has been an elusive goal for a long time. The contribution of this paper
can be summarized as follows:

o We define a new operation, named close-wheel, such that any plane triangular graph
G with n vertices can be constructed starting from the triangle graph by a sequence
of O(n) close-wheel operations.

o We prove a lemma about the planarity of all the drawings of plane triangular graphs.
o We define a new ordering method for the vertices of plane triangular graphs.

o We give a characterization of all the planar drawings of a triangular graph through
a system of equations and inequalities relating its angles. The problem is explicitely
mentioned as open by several authors (see e.g. [21, 1, 12]) We also discuss minimality
properties of the characterization.

The characterization above has several applications.

o It can be used to decide in linear time whether a given distribution of angles between
the edges of a planar triangular graph can result in a planar drawing.

o It allows to tackle the problem of maximizing the minimum angle of the drawing of
a planar triangular graph by studying the solution-space of a non-linear optimization
problem.

o It gives a characterization of the planar drawings of a triconnected graph through a
system of equations and inequalities relating its angles.

o [t gives a characterization of Delaunay triangulations through a system of equations
and inequalities relating its angles, solving a problem stated in [4]. Recently, the prob-
lem of characterizing angles of Delaunay triangulations has been tackled by Dillencourt
and Rivin who have shown that a system of equations and inequalities relating the
angles of a plane triangular graph G can be used to decide whether GG can be drawn
as a Delaunay triangulation [6].
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o It can be exploited to give a characterization of all the planar drawings of a trian-
gular graph through a system of equations and inequalities relating the length of its
edges; in turn, this result allows to give a new characterization of the disc packing
representations of planar triangular graphs.
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An Optimal PRAM Algorithms for Planar Convex
Embedding

Frank Dehne,* ! Hristo Djidjev,! and Jorg-Riidiger Sack?

Introduction

The task of representing a diagram in understandable and readable form arises in a variety
of areas including, e.g., circuit design and information system analysis/design. The reader
is referred to FEades and Tamassia [6] for an annotated bibliography of graph drawing
algorithms.

The existence of a planar representation of a graph can be tested in linear time as was
first proved by Hopcroft and Tarjan [1]. Chiba et al. [4] provided a linear time algorithm
to find a planar representation of a planar graph. Their result is based on an algorithm to
determine the existence of a planar representation due to Booth and Lueker [2].

A subclass of planar graphs whose representation is particularly aestetically pleasing are
those planar graphs whose bounded faces can all be drawn convexly, i.e. the embedding of
each bounded face is a convex polygon. Thomassen [19] describes a sequential method for
embedding a planar graph, once an extendible outer cycle F is given. An extendible outer
facial cycle I of G can be determined in linear time as described in [4, 14]. See also for
other related work [K92, 20, 21].

Results

We give an optimal parallel algorithm for determining whether a graph can be convexly
embedded and if so, for constructing such a convex embedding for the graph. The algorithm
developed runs in O(logn) time with O(n) space and the same processor bound as graph
connectivity.
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Our solution to this problem is based on the following. Using [s,t]-numbers we present a
decomposition scheme and develop a parallel algorithm to determine such a decomposition.
To embed the paths so that each face of the original is convex we generalize the notion of
convexity of polygons to pseudo-convexity. We give an algorithm to embed a path inside
a pseudo-convex polygon so that the resulting subpolygons are also pseudo-convex. When
applying this embedding to the path decomposition, a convex embedding of the entire graph
is obtained.

We use the following parallel algorithms: planarity testing [15], st- numbering [12], list-
ranking [5], lowest common ancestor in a tree [16], biconnectivity [18] (this algorithm is not
optimal as described, but with list-ranking algorithm it becomes optimal), triconnectivity
[7], parallel transitive closure and point location in planar structures [17].
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Algorithms for Embedding Graphs Into a 3-page Book

Miki Shimabara Miyauchi *

A book is a two-part object that consists of a spine, which is a line, and pages, each of
which is a half-plane bounded by the spine. A book embedding of a graph orders the nodes
of the graph linearly along the the spine of a book and arranges each edge on pages so
that the edges do not intersect. Book embeddings have applications in several areas of
theoretical computer science, including VLSI design [1] and complexity theory [4]. In the
Diogenes method for designing fault-tolerant VLSI processor arrays [4], for example, a book
embedding is used to implement the live processors of a multilayer chip (the processors
extended through all the layers). The single-row routing problem [6] is also considered to
be book embedding problem having two pages, and questions such as how to minimize the
number of lines crossing the spine of the book and how to minimize the number of tracks
of a graph have been investigated.

The book-embedding problem has been studied for several kinds of graphs. When book
embeddings are restricted so that each edge is embedded on one page, for example, M. Yan-
nakakis [8] showed that any planar graph can be embedded in a book of four pages and
Chung, Leighton, and Rosenberg [1] showed that the complete graph K, is embeddable in
n/2 pages. When each edge can be embedded in more than one page, Atneosen [1], Babai
[7], and Bernhart [2] have each shown that every graph is embeddable in a 3-page book.

Atneosen’s proof, however, is nonconstructive. By using Leighton’s lower bound on the
crossing number of a complete graph [5], we show the following;:

Theorem 1  Babai and Bernhart’s algorithm that embeds K, into a 3-page book takes
Q(nt) time.

*NTT Basic Research Laboratories, 3-9-11, Midori-Cho, Musashino-Shi, Tokyo, 180 Japan. miki@ntt-20.ntt.jp
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We also present a new embedding algorithm for 3-page book embeddings of graphs.

Theorem 2  There is an algorithm that embeds any graph into 3-page book and that runs
in time O(mn) for a graph of size m and order n.

Sketch of the proof. Let D be a half disk, with center ¢g, on the zy-plane and let C' be
the boundary of D. Arrange the n nodes V = {v;} on C counterclockwise.

for each edge € = (v, v;) (n >s>1>0) € F do
if s=¢+1ori=1then draw (v,, ;) as a straight line segment on D
else let p; be the middle point of the straight line segment (vs_1,vs)
and pi be the point at which the straight line segment (p,, v1)
crosses the auxiliary line cov;. Join the pair of points {vs, pi} by a straight
line segment on D, and join the pair of points {p%, v;} by a half circle
in a plane perpendicular to D.

Let ¢; be the point at which the auxiliary line ¢gv; crosses the boundary of a small neigh-
borhood of ¢y. The path v, ¢q,c2,v9, v3, ¢3, ..., v, is considered as the spine L of the
book, D is considered two pages, and the third page is taken as the sharply bent surfaces
perpendicular to D. The for statement repeats m(= |FE|) times, and each inner for loop
repeats at most n(= |V]) times. |

Theorem 3 Any algorithm embedding K, into a 3-page book takes Q(n?) time.

Theorem 4  Let K, be a complete graph withn = 4s+1 (s € I, s > 1) nodes. Then there
is an embedding of K,, into a 3-page book, with (n — 3)(5n% — 18n — 83)/48 edge-crossings
over the spine of the book.
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Dominance Drawings of Bipartite Graphs *

Hossam ElGindy, I Michael Houle, 'Bill Lenhart, ¥ Mirka Miller, ' David
Rappaport, $ and Sue Whitesides T

A partial order P of a finite set X is a transitive and non-reflexive binary relation on
X. A partial order can be represented by a transitive digraph G on the elements of X.
The dimension d(P) of a partial order P is the minimum number of linear orders whose
intersection is P [3]. There is a direct interpretation of d(P) as it pertains to its associated
graph. We can use vectors x = (21, 23, ...) to represent each vertex z of (G, so that z; <
yi, 1 = 1,2, ..., k, (with strict inequality in at least one coordinate) if and only if y is reachable
from z in G. Such an assignment of coordinates to vertices s called a dominance drawing,
because all edges in the graph (and transitive closure) are geometrically characterized by
the dominance relation [6]. We use the notation d(G) to denote the dominance drawing
dimension of the graph G.

In [7] it is proved that deciding whether d(P) < 3 is NP-complete. A characterization
in [3] of partial orders of dimension two or less leads to a polynomial time recognition
algorithm. Thus, let ¢ denote the complement of an undirected version of the transitive
digraph representing P. Then d(G) < 2 if and only if G is transitively orientable, that is,
the edges of G’ can be oriented to obtain a transitive digraph. Transitive orientability can
be tested in O(¢6K') time, where ¢ denotes the maximum vertex degree and K the number
of edges in the graph, [4] [5].

We present an algorithm that obtains a two dimensional dominance drawing of a transitive
bipartite graph whenever such a drawing exists. The running time of the algorithm is
proportional to the size of the input and is thus optimal. This compares favourably with
the complexity of the algorithm in [4] [5]. Let G = (5,7, F) be a transitive bipartite graph
with § = (s, 82,...,5|5)) a set of sources, and T' = (t1,12,...,7|) a set of sinks. We use
N(s) = {t:(s;,t;) € E} to denote the neighbourhood of s. Let N' = {N(s): s € 5}, and
let M ={N(s)— N(w):s,we S, Nw)C N(s)}, then Z(5,7) = N UM. Let II(Z(5,T))
denote the collection of all permutations of T, 7, such that members of each subset I €
Z(S5,T) are contiguous in 7. Our algorithm to obtain a two dimensional dominance drawing
of the graph G is based on the following characterization of two dimensional transitive
bipartite graphs.

Theorem 1 The dimension of G = (5,1, F) is less than or equal to two if and only if
I(Z(S,T)) is not empty.
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Consider a set X and a set of subsets of X, =. Booth and Leuker [2] present the so called
PQ-tree algorithms that can be used to determine the family of permutations of X so that
every subset £ € = is contiguous in the family of permutations. The resulting computational
complexity is linear in the size of the input. Thus it appears that an expedient solution to
our problem is to compute the set M and subsequently the set Z(,5,7") and apply the PQ-
tree algorithm. However, the size of M may be O(|S|?). This problem is not insurmountable
as we can restrict our attention to a linear sized subset of M. Consider the case where we
have a maximal sequence N(s;) C N(sz) C -+~ C N(sg), then we only need to consider the
set N(si) — N(s1). However, the task of computing this reduced subset of M approaches
the conceptual difficulty of presenting a new approach without using PQ-trees. We present
a new algorithm and skirt the problem of computing a reduced subset of M. The data
structure we use to represent the family of permutations II[(Z(5,7T)) is influenced by the
PQ-tree, but it is specially tailored for this problem and is much simpler.

We define a bozlist of a set T', B(T), as the empty list, or a linked list consisting of one
or more boxes, where each box contains a subset of T', and the boxes form an exact cover
of T, that is, the union of the boxes in the boxlist is 7" and each element of T appears
in exactly one box. If we fix intra-box ordering of elements then a rear to front, or front
to rear, traversal of B(T') corresponds to a permutation of 7. A permutation = of T is
consistent with B(T') if the elements within boxes can be ordered so that a traversal of
B(T) is equal to 7. Let F(B(T')) be used to denote the set of all permutations that are
consistent with B(T'). Given a graph G' = (5,7, F) our algorithm begins with a boxlist
representing all permutations of T, that is, the boxlist consists of exactly one box that
contains T itself. If the graph has a two dimensional dominance drawing then the algorithm
exits with a non-empty boxlist such that F(B(T)) = II(Z(S5,T)) otherwise the algorithm
exits with B(T) = (), an empty list.

The principle operation performed on a boxlist is to add constraints to B(T') that are
associated with a neighbourhood of a source, N(s). The constraints are substrings, or
intervals within the permutations of II(Z(5,T)). Thus B(1') is constrained so that the
interval associated with N(s) will be contiguous in all permutations of F(B(7')). We show
that the adding of constraints can be scheduled so that it is easy to check whether an
interval is contiguous within B(T"), and that N(s) — N(w) is contiguous for all w such that
N(w) C N(s). We maintain an overall linear complexity by avoiding explicit sorting.

Our algorithm development is summarized in the following theorem.

Theorem 2 Given a connected transitive bipartite graph G = (S,T,F), our algorithm
returns F(B(T)) = I(Z(S5,T)). The algorithm can be implemented to run in O(|S|+ |T| +
|E|) time and space, and this is within a constant multiple of optimal.
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Computing the Overlay of Regular Planar Subdivisions in
Linear Time

Ulrich Finke and Klaus Hinrichs*

A planar subdivision is the embedding of a planar graph in the plane and therefore
determines a partitioning of the plane [4]. It is an open problem, whether the overlay of two
simply connected subdivisions can be processed in linear time and space [1]. A first step to
solve this problem is the overlay algorithm for convex subdivisions which has the desired
complexity [3]. Generalizations of this result are of theoretical and practical importance.
We propose an topological sweepline algorithm which solves the problem of overlaying
regular subdivisions in linear time and space. A regular subdivision is simply connected,
the embedding of each edge curve must be a function in z, and each vertex v of the planar
graph has at least one incoming edge from the left and one outgoing edge to the right.

The sweepline in our algorithm divides the overlay subdivision into two parts. The left
part is the correctly processed overlay and the right part contains the unprocessed elements
of the subdivisions. All edges between the left and right part intersect the topological
sweepline. The basic idea of our algorithm is to handle only those edges that represent the
seams between the subdivisions on the sweepline. By performing local sweepline transactions
the algorithm sews up the subdivisions to generate the overlay result. The locality of the
transactions makes it possible to parallelize the algorithm easily.

Algorithms for computing the overlay of planar subdivision are of great practical importance
in geographic information systems and computational geometry [2, 5].
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Generation of Random Planar Maps

Alain Denise *

Methods of random generation are useful tools to study some properties of combinatorial
structures. As regards graphs, such methods are efficient to verify or formulate conjectures,
especially when the exhaustive generation of all the graphs which are to be studied would
be unreasonable. These methods also allow to evaluate the performances of algorithms on
such structures. Moreover, to increase one’s own knowledge on some class of graphs, it
is useful to be able to generate and to display these configurations. Thus, procedures of
random generation are included in softwares of manipulation of graphs, which are used for
research and teaching of graph theory and discrete mathematics [3]. The uniform generation
of random graphs has been well studied for a few years, and efficient algorithms exist for
some particular classes. See for exemple works of Tinhofer [7], Dixon and Wilf [5], Wormald
[8], Jerrum and Sinclair [6].

The matter of our work is the uniform generation of random rooted planar maps with n
edges. A planar map is the projection of a planar connected graph on a plane surface. A map
is rooted if a vertex and an edge adjacent to it are distinguished. By using the encoding
of planar maps due to Cori and Vauquelin [4], we reduce the problem to a problem of
generation of words of a language close to the language of parenthesis systems. Then we
use a rejection algorithm inspired by the methods of Barcucci, Pinzani and Sprugnoli [1, 2],
in order to generate these words. We prove that the average complexity is O(n?), and we
conjecture that it is O(ny/n).
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Symmetric Drawings of Graphs

Joseph Manning*

Introduction

Perhaps one of the most important criteria for producing visually-informative drawings of
abstract graphs is the display of axial and/or rotational symmetry, collectively known as
geometric symmetry. Its importance stems from the fact that, given a symmetric drawing,
an understanding of the entire graph can be built up from that of a smaller subgraph,
replicated a number of times. This paper reviews several results on the definition, detection,
and display of geometric symmetry.

Geometric symmetry in graphs may be defined by using either a geometric or an algebraic
formulation. Geometrically, a graph is said to possess a particular symmetry if there exists
some drawing of the graph which displays that symmetry. Note, however, that geometric
symmetry is an inherent property of the abstract graph itself, rather than of any individual
drawing. Algebraically, a geometric symmetry may be defined as an automorphism of the
graph which satisfies certain conditions. Both definitions are equivalent. While all of the
results below were obtained from the geometric definition, it appears that the algebraic
definition may hold the greatest promise in attempting to expand these results to broader
classes of graphs.

The fundamental problem of determining if a general abstract graph possesses any geometric
symmetry, along with several variations, are all N'P-complete [5, 6]. Accordingly, the current
research has focused on symmetry in planar graphs, since these constitute an important
subclass of general graphs and frequently admit efficient solutions to otherwise intractable
problems.

*Vassar College, U.S.A. manning@cs.vassar.edu
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Algorithms

Optimal, linear-time algorithms, outlined below, have been developed for detecting and
displaying both axial and rotational symmetries in the following classes of (planar) graphs:

o Trees [3, 6]: A tree (“free tree”) is a connected acyclic graph. All symmetries of a
tree must keep its center fixed. (A center of a tree is any vertex whose maximum
distance from any leaf is minimized; every tree has either one center, or two adjacent
centers; the latter case may be reduced to the former by introducing a new vertex
on the edge joining the two centers.) Removing the center from a tree divides the
remainder of the tree into a number of subtrees, and any symmetry of the overall
tree must permute these among themselves, mapping subtrees to isomorphic subtrees.
Using a variation of the linear-time tree-isomorphism test [1, Mp84], these subtrees
are partitioned into isomorphism classes, from which the geometric symmetries are
subsequently determined. A radial drawing of the tree, which displays these symme-
tries, is then constructed. Since it is impossible, in general, to display all of its axial
symmetries in a single drawing of a given tree, the algorithm instead determines the
maximum number of simultaneously-displayable axial symmetries, and constructs the
corresponding “most symmetric” drawing.

e Outerplanar Graphs [4, 6]: An outerplanar graph is one which can be drawn in the
plane with no edge crossings and with all vertices on the outer face. Every biconnected
outerplanar graph has a unique Hamilton cycle, which may be found in linear time.
By traversing its Hamilton cycle, the graph is transformed into a string, in such a
way that geometric symmetries of the graph correspond to certain “symmetries” of
the string. These, in turn, are found using an efficient pattern-matching algorithm
[2], from which the symmetries of the graph are then recovered. By contrast with
the situation for trees, all geometric symmetries of a biconnected outerplanar graph
may be displayed in a single drawing, which the algorithm then constructs. For non-
biconnected outerplanar graphs, geometric symmetries are enumerated by using a
combination of the above algorithm, applied to the biconnected components, with the
algorithm for trees, applied to the block-cutvertex tree, while a similar combination of
drawing techniques is used to construct symmetric drawings.

e Plane Embeddings of Planar Graphs [6]: A planar graph is one which can be drawn
in the plane with no edge crossings, and a plane embedding merely lists the order
of edges emanating from each vertex, without specifying either the coordinates of
the vertices or the shapes of the edges. A planar graph, with such an embedding, is
first transformed into a number of “concentric” biconnected outerplanar levels, and
the geometric symmetries of these levels are then found using the previous algorithm
and “intersected” to give the symmetries of the original graph. This algorithm has
particular relevance to drawing triconnected planar graphs, whose plane embeddings
are unique up to the choice of outer face.

Many of the algorithms have been implemented, and test runs have shown that their optimal
theoretical time complexities do indeed translate into fast practical algorithms. Running on
a mid-range workstation, a graph with up to one hundred vertices can be processed almost
instantaneously.
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Extensions

Perhaps the most important challenge lies in extending these results to the entire class of
planar graphs. An easier extension might be to series-parallel graphs, which form another
proper subclass of planar graphs.

The incidence of geometric symmetry in graphs appears to decrease as the size of the graph
increases. For example, while 58% of 10-vertex trees have at least one axial symmetry, only
16% of 15-vertex trees do. It appears useful to relax the requirement of strict symmetry
and instead investigate using “near-symmetry” as a drawing criterion. An even more far-
reaching generalization would be to explore the construction of (straight-edge) drawings in
which the number of distinct edge lengths is minimized.
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Recognizing Symmetric Graphs

Tomaz Pisanski*

Usually we can deal with graphs if they are small and we are able to grasp their pictorial
representation. If a graph is stored and the information of its construction is lost the problem
is how to recognize the graph: how to find its optimal or near-optimal construction. For a
human the drawing of a graph may represent a way of recognizing the graph.

*IMFM, Department of Theoretical Computer Science, University of Ljubljana, Jadranska 19, 61111 Ljubljana,
Slovenia. tomaz.pisanski@uni-lj.si
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We implemented a series of algorithms for automatic drawing of graphs. The first method
uses the idea of spring embedding by P. Eades [Ead84] that comes in several variants.
Graduate student Danica Dolnitar wrote a Pascal program that compares the algorithm of
Kamada and Kawai [KK89] to the method of Fruchterman and Reingold [FR91].

In the second one we experimented with eigenvectors. We noticed that the 2nd, 3rd and
4th eigenvector can be used as the three coordinates for the vertices in the 3-dimensional
space. Later we obtained some theoretical results that will be presented in a joint paper
with John Shawe-Taylor.

For vertex transitive graphs we tried to use a combination in order to produce good results
for large graphs. First we calculate the automorphisms of graph. We use B. McKay’s Nauty
to do the job. Then we select an automorphism 7 that has the smallest number of orbits.
We contract the vertices in each orbit of 7 and thus obtain the factor graph. Then the factor
graph is drawn using an automatic drawing algorithm. Finally the orbits are blown out so
that the vertices are put on the cycles in the order specified by the permutation =. For
instance, the Coxeter graph on 28 vertices that is otherwise hard to recognize is drawn in
the familiar Y shape. If all the orbits are of the same size, say k, another drawing approach
may be taken. The vertices of the k copies of the factor graph are placed on a circle in order
to display rotational symmetry. Then the edges of the original graph are drawn as straight
lines. The idea of displaying symmetry in graph drawing is certainly not new. The reader
is referred to [2], [1], [6], and [7] for further information about the research on this topic.

It should be noted that computation-intensive algorithms are being programmed by students
and researchers at IMFM in computer languages such as Pascal and C, however they are
all bundled in a Mathematica [Wat89] package called VEGA. The whole system will become
available for non-profit use in 1994.
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Algorithmic and Declarative Approaches to Aesthetic
Layout

Peter Eades and Tao Lin*

Aesthetics for graph layout can be divided into three categories:

o Global criteria, such as minimizing the number of edge crossings, or maximizing sym-
metry.

o Correctness criteria, such as placing the employer above the employees in an organi-
zation tree drawing.

o Preferred criteria, which express the preferences of a specific user at a specific time.
These criteria may include placing a particular node in the centre of the page, or using
a particular aspect ration.

We can divide implementations of layout functions into two general categories: those with
an algorithmic approach and those with a declarative approach.

The algorithmic approach is well documented in the survey [2]. This approach concen-
trates on achieving global criteria. Typically, the approach ignores the semantic or syntactic
meaning of a specific diagram and only uses graph theoretic structure.

In alayout algorithm, the aesthetics are hard coded into the implementation of the function.
It is not easy to change the requirements for a layout algorithm at run time. Such layout
algorithms are not flexible, cannot cope with preferred criteria, and normally can only cope
with a few fixed correctness criteria.

A declarative layout function handles the layout according to a flexible set of require-
ments specified by end-users or interface designers, even at run time. A system which uses
declarative layout creation function has two components: an editor through which user can
specify aesthetics and a mechanism for creating the layout. The aesthetics may be presented
as constraints, rules, or parameters for a cost function. There are several mechanisms used
in the declarative approach, such as constraint solvers, genetic systems, rule based systems,
and simulated annealing.

The expressive power of constraints and rules ensure that a wide variety of requirements
can be specified; thus the declarative approach maximizes flexibility.

However, the declarative approach has significant problems. It is difficult to choose the rules
or constraints (it is difficult to foresee the effects of a constraint or rule, even in a moderately
sized system). Implementations of declarative functions are very slow, and sometimes (due
to their heuristic nature) do not achieve their aim, even there is a layout which satisfies
relevant requirements. In particular, the declarative approach has some difficulty handling
global aesthetics.

We conclude that neither algorithmic nor declarative approaches are suitable for sole adop-
tion in graphic user interfaces. However, by integrating the approaches, one can use the
advantages of one to compensate the disadvantages of the other.

If alayout algorithm is built on top of a declarative system, the integrated system seems very
slow [3]. Declarative techniques are used successfully on top of algorithms in [TBB8S, 1];

*Department of Computer Science, University of Newcastle, Newcastle, Australia. eades@cs.newcastle.edu.au.
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however, in these cases the declarative techniques are tightly bound to the algorithms. We
believe that an effective approach is to loosely tie some declarative functions on top of a
layout algorithm. Briefly, this may be achieved by exploiting the nondeterminism in layout
algorithms.

The integrated system may be used as follows:

o The interface modeler creates a generic toolbox of layout algorithms covering a wide
range of global aesthetics. The algorithms leave points of nondeterminism to be ex-
ploited by constraints.

o The interface designer chooses a specific set of algorithms for a specific application. The
algorithms are customized by specifying constraints so that they satisfy the correctness
criteria of the application.

e The end user specifies further constraints to achieve preferred criteria.

This approach satisfies the same set of the global criteria as the underlying layout algo-
rithm. However, the integrated approach is sufficiently flexible to support a broad range of
correctness and preferred criteria.

We give examples of this approach using tree drawings.
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A Visual Approach to Graph Drawing *

Isabel F. Cruz,! Roberto Tamassia,! and Pascal Van Hentenryck’

This abstract describes research in progress on a new technique for the visual specification
of constraints in graph drawing systems.

Work in graph drawing has traditionally focused on algorithmic approaches, where the
layout of the graph is generated according to a prespecified set of general rules or aesthetic
criteria (such as planarity or area minimization) that are embodied in an algorithm. Perhaps
the most sophisticated graph drawing system based on the algorithmic approach is the one
developed by Di Battista et al. [BBL92], which maintains a large database of graph drawing
algorithms and is able to select the one best suited to the needs of the user.

The algorithmic approach is computationally efficient, however, it does not naturally sup-
port constraints, i.e., requirements that the user may want to impose on the drawing of a
specific graph (e.g., clustering or aligning a given set of vertices). Previous work by Tamassia
et al. [TBB88] has shown the importance of satisfying constraints in graph drawing sys-
tems, and has demonstrated that a limited constraint satisfaction capability can be added
to an existing drawing algorithm. Recently, several attempts have been made at developing
languages for the specification of constraints and at devising techniques for graph drawing
based on the resolution of systems of constraints [Kam89, Mar91, HM90].

Current constraint-based systems have three major drawbacks:

e The specification of constraints is made through a detailed enumeration of facts from

a fixed set of predicates, expressed in Prolog [Kam8&9] or with a set-theoretic notation
[Mar91].

e Natural requirements, such as planarity, need complicated constraints to be expressed.

e General constraint-solving systems are computationally inefficient [HM90].

The above discussion indicates the need for a language to specify constraints that reconciles
expressiveness with efficiency.

We believe that visual languages could provide a natural and user-friendly way to express
the layout of a graph. For this purpose, we plan to design a variation of DOODLE, a visual
language for the specification of the display of facts in an object-oriented database [Cru92,
Cru93]. We envision the following goals, which differentiate our work from [Mar91] and
[Kam89]:

¢ Visual specification of layout constraints: the user should not have to type a long list
of textual specifications.

e Extensibility: the user should not be limited to a prespecified set of primitives.

o Plexibility: the user should not have to give precise geometric specifications, such as
exact coordinates or precise geometric relations.

*Research supported in part by the National Science Foundation under grant CCR-9007851, by the U.S. Army
Research Office under grant DAATL03-91-G-0035, and by the Office of Naval Research and the Advanced Research
Projects Agency under contract N00014-91-J-4052, ARPA order 8225.
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In addition to constraints, the visual language should also be able to express aesthetic
criteria associated with optimization problems (e.g., crossing or area minimization) and to
identify general drawing standards (e.g., layered drawing or upward drawing). Recent work
by Eades and Lin [EL93] has similar objectives, but is not based on a visual specification.

For efficiency reasons, we envision using our visual language within a graph drawing sys-
tem similar to Diagram Server [BGST90]. A crucial component of this system is a com-
piler that translates the visual specifications into a drawing algorithm synthesised from a
database of drawing algorithms. The algorithms database will contain both polynomial- and
exponential-time algorithms. The main purpose of the drawing compiler is to deduce from
the specifications a combination of algorithms that solves the layout problem as efficiently
as possible. The work in [BBL92] is particularly interesting in this context.
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Layout of Trees with Attribute Graph Grammars

*

Gaby ZinBBmeister

Graph grammars are a formalism for syntactically describing classes of graphs. Their pro-
duction rules are used for graph rewriting to implement graph manipulations. There are a
variety of application areas ranging from software development environments and compiler
construction over pattern recognition and development of biological cell layers to specifica-
tion of concurrent systems.

The central idea of our approach to layout graphs is viewing layout algorithms as attribute
evaluators of attribute graph grammars, thus a layout algorithm is an attribute scheme plus
an attribute evaluator. The main advantage is that different layouts can be specified simply
with different attribute schemes.

We have modelled three widely used tree layout algorithms ([6, 7, 9]) with attribute graph
grammars (AGG). A graph grammar (GG) for arbitrary trees is described. The three differ-
ent layout algorithms are specified by different attribute schemes of the same grammar. We
illustrate our approach with the Moen algorithm [6]. All three algorithms will be presented
in the full paper.

Attribute Graph Grammars (AGG)

GGs are a generalization of string grammars which are well known from formal language
theory. Kreowski and Rozenberg give an excellent survey of graph grammars [4, 5]. For
our purposes we use so called context free node label controlled GGs (CFNLC) [2]. The
productions of such a GG consist of one nonterminal node as the left-hand side of the rule,
a graph over nonterminal and terminal nodes as the right-hand side and an embedding
specification. A derivation step consists of choosing one occurrence of the left-hand side
nonterminal A in the host graph H (which is the analogue of a sentential form), removing
that instance, adding the right-hand side graph R and connecting the remainder of H to R
following the embedding specification. The embedding specification describes which nodes
of the neighbourhood of the instance of A in H are to be connected with which nodes of
R. Thus edges may be deleted or added or their orientation may be inverted. The language
produced by a GG is an (infinite) set of graphs.

The AGG approach used in this paper is a generalization of Knuth’s attribute (string)
grammars. Synthesized or inherited attributes are associated to nodes and attribute eval-
uation rules to the GG productions. Attribute evaluators may be constructed analogously
(see [8]).For special GGs efficient (polynomial time) parsers can be constructed [3] and
attribute evalutor generators have been implemented [8].

The GG for Arbitrary Trees

The GG for trees is defined as follows:
Let T = (Xny ={F, 5}, X7 ={t}, Y = {«}, P, S = F') with the productions as in fig. 1.

*Wilhelm-Schickard-Institut, Sand 13, D-72076 Tiibingen. zinssmei@informatik.uni-tuebingen.de

66



TG ® TEENG
{F,S,t}: o4 gout” " {F,S,t}: xous gout
{5,t}: aine g {F,S,t}: a's i -H} {F,8,t}: a2 g™

®© O—0 ©

Figure 1: Productions P of T

S nodes are the ’generic’ nodes with which we can add an arbitrary number of children to
a treenode, whereas F’ nodes represent a fully derived subtree.

The upper nonterminal nodes are the left hand sides, the lower graphs with terminal and
nonterminal nodes and solid edges are the right hand sides of the productions. The dotted
lines indicate the replacement step. The mark {F,5,t} : ' — 2°® means that x-labelled
edges from F-, S- and t-nodes to the left hand side node, are replaced by x-labelled edges
from the same sources to the right hand side node specified by the dotted line (x°“* denotes
the reverse orientation of edges.) The empty set {} at a dotted line denotes that the target
node is not connected to the host graph.

The terminal alphabet can obviously be extended, but is reduced to one node type for
simplicity. There is only one edge label, so we can think about the terminal tree as one with

unlabelled edges.

The Moen Algorithm as AGG

The main idea in attributing is to push information about subtree contours from bottom
to top in the derivation tree (synthesized attributes), joining subtrees in the S-nodes and
adjusting the root over the subtrees in the F-nodes. The relative position of a node to
its sibling is calculated in this pass too. Afterwards in a second pass the missing relative
positions of the first child of each subtree are pushed downwards in the derivation tree
(inherited attributes). Absolute coordinates may be assigned to nodes in this second pass
as well, but are omitted here for simplicity. Figure 6 lists the attributes and figure 6 shows
the complete attribution. The functions written in italic are taken from the original Moen
algorithm, except for different use of reference parameters and global values. The attributes
are evaluable with a two pass left to right evaluation on the derivation tree.

Conclusion

The only other approach we know to drawing graphs using graph grammars is published
by Brandenburg [1]. He augments graph grammar productions by placement rules in form
of left-of, above-of constraints between rhs-nodes, a bounding box around the rhs and
some connection points on that bounding box. This is well suited for graphs where replacing
a (nonterminal) node results pushing the rest of the graph in x- and y- dimension to get
space for the rhs-nodes at the (relative) old place of the [hs-node. Such graphs are for
example syntax diagrams or series parallel graphs. But with the tree graph grammar above
constraints in the sense Brandenburg will not lead to a reasonable layouts, because it is not
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Attributes Symbol Type Explanation

rootdims (syn) F S integers  width, height and border of the root node

contour (syn) r polyline  contour around the tree derived from F

contoursubtrees (syn) S polyline  contour around the subtrees derived from S
lastsubtreeheight (syn) S integer  height incl. border of the subtreeroot derived last from S
sum (syn) S integer  sum of heights of the subtrees

dims (syn) t integers  width, height, border of the terminal node

offset (inh) S, It position relative x-, y-coordinates

heightsubtrees (inh) S integer  height of subtrees derived from S and its siblings

Figure 2: Attributes for the Moen Algorithm

possible to define left-of relations between siblings. The reason is that sibling nodes are
not related by edges and not produced within the same production, so no relation can be
stated.

As further work we plan to develop a CFNLC GG for directed acyclic graphs (DAGs)
and attribute it with some of the current layout algorithms for DAGs. Even though the
literature ([3, 8]) describes generation of polynomial time parsers for subclasses of GGs
and generation of attribute evalutors for AGGs, no running implementation is available.
For that reason we are implementing a parser and an attribute evaluator for TG'G. For
interactive environments, where graphs are manipulated, incremental layout of graphs is
necessary. This could be done by applying incremental attribute evaluation to the attribute
graph grammar approach.
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P1:

po:

Ps:

F rootdims := S.rootdims

F'.contour := IF S.contoursubtrees = empty THEN layout_leaf(.S.rootdims)
ELSE attach_parent(S.contoursubtrees, S.rootdims,S.sum)

S.offset = Floffset

S heightsubtrees := S.sum

Sp.contoursubtrees := IF Sj.contoursubtrees = empty THEN F'.contour

ELSE mergel(S;.contoursubtrees, F'.contour)
Sp.lastsubtreeheight := F.rootdims.height + 2 * F.rootdims.border

Sy .rootdims = Sy.rootdims
Sp.sum := IF Sjcontoursubtrees = empty THEN Sj.lastsubtreeheight
ELSE Sy.lastsubtreeheight + merge2(S;.contoursubtrees, F'.contour) + S;.sum
Floffset.x := IF Sj.contoursubtrees = empty THEN
Si.rootdims.border 4+ const_parent_distance + S;.rootdims.width
ELSE 0
Floffset.y := IF Sj.contoursubtrees = empty THEN

(S1.rootdims.height - S;.heightsubtrees )/2 + S;.rootdims.border
ELSE merge2(S;.contoursubtrees, F.contour) + S .lastsubtreeheight
S .offset = Sp.offset

S1.heightsubtrees  := Sjy.heightsubtrees
S.contoursubtrees := empty
S'lastsubtreeheight : =0

S.sum =0

S.rootdims := t.dims

t.offset := S.offset

Figure 3: Attribute Scheme of T for the Moen Layout Algorithm

[9] Tree-Widget of the Athena Widget Set, X11R5 distribution of MIT, 1990.
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The Display, Browsing and Filtering of Graph-trees

Sandra P. Foubister* ' and Colin Runciman T

Context

We are writing an interpreter for a little lazy functional language. Implementation is by
graph reduction [6]. The user is allowed to view, and explore, the program graph at every
reduction step, or at less frequent intervals on request. The aim is to gain insight into the
process of lazy graph reduction, where the order of reduction is not always intuitive. There
are two main objectives: to explore the extent of sharing, and to be able to identify areas
of inefficiency. The potential size and complexity of the graphs pose problems for display.
This paper presents and discusses novel solutions to these problems.

Complexity

One way of simplifying the display is to avoid any crossing of arcs. There is no guarantee
that a program graph will be planar — indeed, the features of a lazy language: sharing,
recursion, and “knot tying” in general, make planarity unlikely. Rather than trying to
display every arc in the graph, the solution being investigated is to use a spanning tree.
This is enhanced with display leaves to represent arcs that would otherwise not be shown.
Display leaves are labeled with a reference to the vertex to which they represent an arc.
The problem of program graph display is thus limited to that of tree display. The special
kind of tree being displayed is referred to as a graph-tree.

Size

The problem of size (compounded by the addition of display leaves) may be resolved in
several ways: the scale of the display may be reduced, or only part of the graph may be
shown at a time. In addition to these, a solution proposed here is that the size of the
underlying graph be reduced, by grouping vertices together in clusters, so that the new
graph has fewer vertices.

Graph-trees

The implementation of the programming environment is itself in a lazy functional language,
namely Haskell [5]. In such a language one can define a displayable graph-tree type, DGT,
that is convenient for subsequent display and browsing of the structure. It is parametrised
on index, value and reference types. Indices uniquely identify vertices, values are vertex
labels (not necessarily unique), and the reference type is the type of the display reference,
typically an integer.

*Supported by the Science and Engineering Research Council of Great Britain
'Department of Computer Science, University of York, Heslington, York, YO1 5DD.
{sandra,colin }@minster.york.ac.uk
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data DGT i v r = DGT Xpos (Vertex i v r) [DGT i v r] | NoDGT

The Xpos is a provisional position on the x axis of the display that may be scaled to an
actual x coordinate.

The Vertex is either a reference to a DGT not instantiated at this point, or a vertex value
with its associated identifying index, and possibly a display reference.

data Vertex i v r = Ref (DGT 1 v r) | Val v i (Maybe r)

The list of DGTs within a DGT construction comprises a predecessor as well as the successors
of the current DGT: we have a threaded structure that exploits the laziness of the defining
language in its construction [1].

NoDGT is needed to represent the predecessor of the root of the (directed) graph. Each DGT
has directly available sufficient information to redisplay the graph-tree with itself at the
root.

Display

The requirements of the display are that it should be compact but also revealing of the
structure. Various styles of presentation were considered, including the tip-over and inclu-
sion conventions described in [4], and the possibility of showing the tree as a free tree (see
[3]) (despite the existence of a root). For other purposes these may be suitable, but in our
system the display of a graph-tree reflects the conventional display of applicative expressions
as trees: interior vertices correspond to applications, with function and argument graphs
as successors. Shared reference arcs may point back up the tree.

A modification of Vaucher’s algorithm [8] is used to calculate Xpos entries as the DGT is
being created. The final display is a spanning tree of the graph, with an extra node for
each arc that is not part of the tree. The choice of spanning tree is determined by the
order in which vertices are visited during the display routine. At present the order is that
resulting from our variant of Vaucher’s algorithm, but the resulting structure may not be
ideal for filtering and browsing, and may not have the most satisfying appearance. However,
determining an optimal spanning tree for display purposes may be infeasibly complex in
our interactive setting [7].

Browsing

In addition to the main display, a minigraph, scaled to fit exactly onto a small window, is
used as a map for browsing, as advocated by Beard and Walker [2]. The graph-tree has the
shape it would have if labels were present, for concordance with the main display, but no
labels are shown.

The main display is in a larger window, but on a fixed scale, so the graph-tree may have
to be pruned. Arcs to vertices off the display, are truncated to form stubs. Clicking on the
display of a vertex, or the end of a stub, or a display reference, brings the appropriate vertex
to the root of the display. Clicking in the minigraph window permits the user to jump to
another section of graph-tree.
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Filtering

In order to reduce the number of vertices in the graph to be displayed, without violating
the meaning of the original graph, the notion of a homosemantic graph is introduced. The
idea is that a cluster of vertices with their interconnecting arcs becomes one vertex in a
graph of clusters. This vertex inherits all the arcs from the vertices it incorporates that
connect with the rest of the graph. The value of the new vertex integrates the values of its
constituent vertices. The full structure of the original graph is not retained in the display,
but the conditions under which clusters may assimilate others are defined in such a way
that the graph has the same meaning. The implementation of such a filtering scheme raises
various interesting questions about the definition of suitable “filters”, and the ordering of
compaction of the graph.

The system outlined above offers an effective way of observing even large and complex
graphs. Qur current goal is to provide users of our application with a flexible mechanism
for defining filters, to achieve such views of the program graph as they find necessary.
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A Layout Algorithm for Undirected Graphs

Daniel Tunkelang. *

We propose an algorithm for generating straight-line two dimensional layouts of undirected
graphs. OQur algorithm uses a combination of heuristics to obtain layouts which are near-
optimal with respect to an “aesthetic” cost function. The heuristics improve on existing
approaches by focusing on three aspects of the graph layout problem: computation of the
aesthetic cost of a layout, order of node placement, and local optimization techniques.
An implementation of our algorithm in C on an IBM RS-6000 workstation lays out most
graphs of up to 100 nodes in under 10 seconds (many in less than 2 seconds) and consistently
generates layouts which, with respect to the three aesthetic criteria described below, are
better than those produced by the “force-directed” algorithm of Fruchterman and Reingold
[F'R91] and the simulated annealing algorithm of Davidson and Harel [DH91].

Di Battista et al. [DBETT93] discusses three aesthetic criteria for drawing graphs: edge
lengths should be uniform; non-adjacent nodes should be far away from each other; and
the number of edge crossings should be minimal. The first two criteria are characteristic of
the spring embedder model proposed by Eades [Ead84] and further developed by Kamada
and Kawai [KK89] and Fruchterman and Reingold [FR91]. Our algorithm’s aesthetic cost
Sfunction quantifies a weighted evaluation of all three criteria.

Our algorithm has three stages. In the first stage, it determines the order in which nodes will
be placed by constructing a minimal height breadth-first spanning tree of the graph. This
ordering enumerates the nodes of the graph from the center outwards. In the second stage,
the algorithm places the nodes one at a time by sampling positions near the already placed
neighbors of a node. After placing each node, the algorithm locally optimizes the layout
near that node. The optimization process propagates itself through neighboring nodes; that
is, whenever the local optimization procedure succeeds in improving the placement of a
node, it calls itself recursively on all of the already placed neighbors of that node. After
this process stabilizes at a local optimum, the algorithm proceeds, iterating through the
list of nodes. The third stage fine-tunes the layout by again performing local optimization
at every node.

Our algorithm’s speed is largely the result of the way it computes the aesthetic cost function.
First, the computation is incremental, so that a small change in the layout requires mini-
mal recomputation. Second, the algorithm approximates the cost by ignoring interactions
between far away, nonadjacent nodes (as in the “grid-variant” principle of Fruchterman and
Reingold [FRI1]). Third, the algorithm uses the uniform grid technique of Akman et al.
[AFKN89] to compute edge crossings. Although these methods are not conceptually origi-
nal, none of the published graph layout algorithms apply them in combination to computing
the aesthetic cost function, which is the inner loop of computation.

Unlike most of the published layout algorithms for undirected graphs, which initially place
all nodes randomly, our algorithm places nodes one at a time in a deterministic order. The
inspiration for our method is a node-ordering strategy proposed by Watanabe [Wat89]. Our
algorithm places the nodes in an order that reflects their centrality in the graph, thereby
minimizing the constraints on the nodes which will eventually occupy the denser regions of

*Carnegie Mellon University. For a complete paper, please send email to Daniel. Tunkelang@cs.cmu.edu. This
work is based on my Master’s Thesis, which was supervised by Charles Leiserson at MIT and Mark Wegman at
the IBM T J Watson Research Center.
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the layout. This strategy exemplifies a general principle: a deterministic strategy based on
knowledge of the problem is better than a random one based on ignorance.

The other innovation in our algorithm is its local optimization method. Whenever the algo-
rithm improves the layout by moving a node, it propagates the local optimization process to
that node’s neighbors. That is, whenever the improvement procedure finds a way to reduce
the cost associated with a particular node, it effects that improvement and then calls itself
recursively on all of that node’s neighbors. This approach provides several benefits. First,
perfect initial placement is not so important, because the immediate attempt at local opti-
mization fine-tunes the initial guess. Secondly, propagating optimization through neighbors
tends to find the regions of the layout that need improvement and concentrate on them.
Thirdly, this method of local optimization ensures that the algorithm gets what it pays for;
the time it spends in local optimization is bounded in terms of the number of improvements
the optimization generates. This method of local optimization, together with a method for
rapid initial placement, makes the algorithm fast and effective.

The proof of our algorithm’s merit is in its performance. Fruchterman and Reingold, as
well as Davidson and Harel, graciously allowed implementations of their algorithms to
be used for comparison with an implementation of ours. The test suite for comparison
consisted of examples from their papers, as well as “textbook” examples of graphs and
randomly generated graphs of up to 64 nodes. The proposed algorithm’s running time is
about the same as that of Fruchterman and Reingold and is much faster than the simulated
annealing algorithm of Davidson and Harel. All three algorithms were aiming for the same
aesthetic criteria (uniformity of edge lengths, distribution of nodes, and edge crossings). Our
algorithm consistently produced the best layout with respect to these measures, especially
the number of edge crossings. A drawback of our algorithm is that it does not explicitly
consider the angles between adjacent edges, since measuring them would have required
floating point computation. As a result, some of these angles are almost illegibly small. In
general, however, our algorithm is very effective at producing low-crossing, aesthetically
pleasing drawings of graphs of up to 64 nodes and average degree of up to four or five.
Beyond this, the graphs become too dense for the proposed algorithm, and for those cited
as well.

In summary, our algorithm improves on existing work by optimizing the inner loop of com-
putation, intelligently choosing an order for node placement, and using a local optimization
strategy that exploits local structure within a layout. We continue to explore the many
open problems in graph layout.
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Drawing Ranked Digraphs with Recursive Clusters

Stephen C. North

Abstract not Available.

Graph Drawing Algorithms for the Design and Analysis of
Telecommunication Networks

*

Toannis G. Tollis and Chunliang Xia

The problem of drawing a graph in the plane has received increasing attention recently due
to the large number of applications [1]. Examples include VLSI layout, algorithm animation,
visual languages, and CASE tools [2]. Vertices are usually represented by points and edges
by simple open curves. In this paper we study techniques for visualizing telecommunication
networks. The visualization of telecommunication networks is very useful in aiding the
design process of minimum cost networks and the management of network operations [6].
We present linear time algorithms for drawing telecommunication networks (with optimal
area) so that important properties are displayed.

The design and analysis of cost effective survivable telecommunication networks is a very
important problem [3, 5, 7, 8, 10]. Most problems that aim towards minimizing the total
cost of a network are NP-hard [4]. For that matter, computer tools to aid the design and
analysis of telecommunication networks are in great demand. A central problem of such
tools is how to draw a network on the computer screen such that important aspects of
the network can be easily captured and an improved solution can be obtained by a user
interactively.

The problem is defined as follows: Let G = (V, £) be a telecommunication network with
a set of nodes V (representing the sites of switches) and a set of links F (representing

*The authors are with the Department of Computer Science, The University of Texas at Dallas, Richardson,
TX 75083-0688. tollis@utdallas.edu, xia@utdallas.edu.
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the electrical wires or optical fiber links between nodes). The traffic requirements between
the nodes are defined by an n X n matrix T, where T'(7, j) corresponds to the amount of
traffic between nodes 7 and j. We need to design a network which (a) satisfies the traffic
requirements, (b) can survive failures, and (c) the cost of the network is minimum. A
network is I-survivable if it can survive the failure of a link e, i.e., the removal of link e
does not disconnect the network and the traffic that originally travels through e can be
accomodated on another path. The multi-ring architecture is considered as a cost-effective
survivable network architecture due to its simplicity, improved survivability and bandwidth
sharing [9, 10]. A ring cover of GG is a set of rings (cycles) of G such that the rings are
connected and every node in V is included in at least one ring. Apparently, a network with
a ring cover is 1-survivable since the switches automatically send the required traffic around
the ring if a link failure occurs.

Since the nodes of the network correspond to sites, they have geographic coordinates. Hence,
the network can be drawn naturally with little effort. However, the important properties
of the network that designers are interested in (such as rings) are not displayed. In this
paper, we describe several algorithms for drawing telecommunication networks in order to
to aid the design of cost-efficient networks. Given a ring cover of a network, our algorithms
display it in such a way that rings are easily identifiable and possible problems can be easily
spotted by network designers.

Ideally, we want to draw all rings as cycles, but this is not always possible if rings are
not allowed to intersect. For instance, if three rings share a common node, then the cycles
will intersect. In cases like this, we will use a geometric shape with a slight deviation from
cycle, called almost-cycle, to represent rings. An almost-cycle is such a geometric shape
that, except for very few nodes, almost all nodes of a ring are placed on the boundary of a
cycle. Even if we allow rings to cross, not all ring covers admit such a representation. In this
paper, we present a necessary condition for ring covers that admit such a representation.

As is the case in most graph drawing algorithms, the exsitence of unnecessary crossings is
viewed as harmful to the readability of the drawings. Thus, minimizing such crossings is
central to our approach. Also, we assume the exsitence of a resolution rule, that is, in the
final drawing, any two nodes of the network must be kept far enough so that the human
eye can tell them apart. This implies that the drawing cannot be arbitrarily scaled down. If
we honor such a resolution rule and represent rings as cycles, there is a trivial lower bound
of Q(N?) on the area required for the drawing, where N is the number of nodes in the
network.

In order to capture the complexity of interaction among rings, a new graph G’ is introduced.
Given a network G and its ring cover ', a contact node is a node of GG that is contained in at
least two different rings of C'. Let V' be the collection of all contact nodes, G’ = (CUV', E'),
where E' = {(r,v)| r € C, v € V' and v is a node of ring r}. Graph G’ is called the ring-
contact node graph. According to the definition of a ring cover, ' is a connected graph.

When G’ is a tree, three different drawing algorithms are introduced: outside drawing,
inside drawing, and mized drawing. All of the algorithms create zero unnecessary crossings
and take linear time.

In the rest we present our main results.

It seems natural to put two rings side by side when they share a contact node, since all
rings will be drawn on the outer space, we call this style of drawing outside drawing.

Theorem 1 Algorithm outside drawing results in a drawing which takes O(N?) area, and
each ring is represented by an almost-cycle.
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Instead of placing two rings side by side when they share a contact node, we place one
inside another. We call this style of drawing inside drawing.

Theorem 2 Algorithm inside drawing results in a drawing which takes O(N?) area, and
each ring is represented by a cycle.

There are some cases where an inside drawing outperforms an outside drawing. There are
also cases where an outside drawing outperforms an inside drawing. Hence, we combine the
strength of the two to obtain a mized drawing.

We assign a weight to each node v in G’. If v is a contact node, v has weight 0; if v is a
ring, v has a weight equal to the number of nodes in the ring. Let N’ be the length of the
second longest path in G.

Theorem 3 Algorithm mixed drawing results in a drawing which takes O(N x N') area,
and each ring is represented by a cycle.
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A View to Graph Drawing Algorithms through GraphEd

Michael Himsolt *

We compare a collection of graph drawing algorithms implemented in our GraphEd system.
We report on our experience from running these algorithms on a large number of exam-
ples both from the literature and by our own, and present our evaluation of the practical
relevance of the algorithms and layout criteria.

The representation of complex structures as graphs is widespread. Graph drawing has gained
increasing importance in many areas of Computer Science, but has proved to be a difficult
task. Our GraphEd system is an approach to support solutions to this problem. GraphEd
has been used by practitioners for database design, Petri nets and electrical circuits. One
of its major applications is the implementation and evaluation of graph layout algorithms.

With its capabilities to create and edit graphs, GraphEd provides an effective environment
to create and test large sets of examples. Since all drawing algorithms are built into one
tool, it is easy to compare the effect of different algorithms on the same graph.

There is also a special module (“layout suite”) that runs all applicable layout algorithms on
one graph. It also writes statistical data such as the size of the graph, the space used, or the
number of bends and crossings. We have created a large database of graphs and statistics
with that module.

We regard testing many examples as an adequate and probably the best way to get precise
data on the practical relevance of layout criteria and graph drawing algorithms. Currently,
the following algorithms are implemented :

e Spring embedder (based on algorithms by Fruchtermann/Reingold and Kamada)
o Tree drawing (Walker)

¢ Dag drawing (Sugiyama/Tagawa/Toda)

e Planar drawing on a grid (Woods)

¢ Planar drawing on a grid with bends minimization (Tamassia)

e Planar straight-line drawing with convex faces (Chiba/Onoguchi/Nishizeki)

e Planar straight-line drawing on a grid (de Fraysseix/Pach/Pollack and
Chrobak/Payne)

o Drawing Petri nets from term descriptions (Seisenberger)

We have tested these algorithms on a large number of examples, both from literature and
by our own. We have tested arbitrary graphs as well as graphs with special structure (e.g.
grids). Our experiences can be comprised as follows :

e Spring embedders produce good layouts for most graphs. They stress the display of
isomorphic and symmetric substructures. A major drawback is the high runtime.

e I'rom the practical point of view, tree drawing seems to be solved, since the algorithm
reproduces the tree structure in the same way as the user would do it by hand.

e The algorithm of Sugiyama/Tagawa/Toda provides a good base for drawing dag’s, but
the layouts are not as good as trees.

*Universitat Passau, 94030 Passau. himsolt@fmi.uni-passau.de
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e Planar graphs are generally difficult to draw, because “planarity” alone does not ex-

plain the intrinsic structure of the graph. Moreover, some planar graph drawing algo-
rithms depend on the actual planar embedding, which causes further problems.
Tamassia’s algorithm gives our best layouts, although it has the highest running time
in this class. The drawings look pretty.

Wood’s algorithm gives suitable results for small graphs, but the number of bends is
much higher as with Tamassia’s algorithm.

The algorithms of Chiba/Onoguchi/Nishizeki and de Fraysseix/Pach/Pollack are of
limited practical use. They tend to cluster nodes and often destroy pleasing pictures.
The Petri net algorithm takes agents as input, which are term descriptions of the
nets. It produces very good layouts. This comes from the fact that the agents provide
detailed information on the structure of the nets. The information is used to draw the
graph as a designer would do.

The good results stimulate our work on a general framework of graph grammar based
layout algorithms.

JFrom the experiments, our actual ranking of layout criteria is :

ST e W N

Distribute the nodes in a uniform fashion.

Display the intrinsic structure of the graph.

Display symmetric and isomorph substructures of the graph.

Use few edge crossings to draw the graph (none if the graph is planar).
Use few bends to draw the graph.

Place nodes and bends on a grid.

“Straight line edges” may or may not be a good criterium, depending on the other criteria
used in a particular algorithm. It often imposes restrictions on the layout, like in the al-
gorithms of Chiba/Onoguchi/Nishizeki and de Fraysseix/Pach/Pollack. We have found out
that allowing a few bends, as in Tamassia’s algorithm, is usually a good choice.

GraphEdis available with anonymous ftp from forwiss.uni-passau.de (132.231.1.10),
/pub/local/graphed.
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An Automated Graph Drawing System Using Graph
Decomposition

C. L. McCreary, * C. L. Combs, ' D. H. Gill, ¥ and J. V. Warren?

Introduction

This paper presents a graph layout technique (CG) based on the hierarchial decomposi-
tion of graphs. One of the major differences between the graphs drawn by CG and other
systems is that the vertices in CG’s graphs are spaced in a balanced way both vertically
and horizontally. Many other systems partition vertices into levels, and all vertices of the
same level are placed on the same horizontal axis. Nodes tend to bunch toward the top
of the graph is these systems. By using our graph decomposition technique, CG is able to
determine balanced vertical spacing as well as balanced horizontal spacing. Edge crossings
are reduced by a very efficient variant of the Barycentric method that exploits the subgraph
hierarchy.

Graph Decomposition

Clan-based graph decomposition [2] is a parse of a directed acyclic graph (DAG) into a
hierarchy of subgraphs called clans. A subset X of DAG G is a clan iff for all z,y € X and
all z € G- X, (a) z is an ancestor of x iff z is an ancestor of y, and (b) z is a descendant of
x iff z is a descendant of y.

A simple clan C, with more than three vertices, is classified as one of three types . It is
(i) primitive if the only clans in C are the trivial clans; (ii) in dependent if every subgraph
of Cis a clan; or (iii) linear if for every pair of vertices x and y in C, x is an ancestor or
descendant of y. Independent clans are sets of isolated vertices which can be visualized as
horizontal neighbors. Linear clans are sequences of one or more vertices v;, v;41, ..., v;_1, V;
where for i | k, »; is an ancestor of v, and can be seen as a vertical string. Any graph
can be constructed from these simple clan as well as decomposed into a parse tree with
clan components. Primitive clans do not fall into the clear-cut categories of vertices that
should be laid out horizontally or laid out vertically. One procedure for further reduction
of primitive clans is to form an independent clan of the source vertices of the primitive and
decompose the remainder of the primitive. The independent clan is linearly connected to
the rest of the clan. The parse tree of any completely decomposed graph is a bipartite tree
where the internal vertices represent clans that are classified as either linear or independent.

The parse tree of the graph can be given a geometric interpretation. A bounding rectangle
with known width and height can be associated with each clan. The parse tree hierarchy
shows the embedding of the bounding rectangles.

A simple two-dimensional algebra defines the bounding rectangles. Singleton DAG vertices
(or equivalently parse tree leaves) have unit square bounding rectangles. Linear clans require

*Dept. of Computer Science and Engineering, Auburn University, Auburn, AL. mccreary@eng.auburn.edu
TEquifax Incorporated, Atlanta, Georgia.
{The MITRE Corporation, McLean, Virginia.
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an area whose length is the sum of the lengths of the component clans and whose width
is the maximum width of the component clans. Independent clans require an area whose
width is the sum of the widths of the component clans and whose length is the maximum of
the lengths of the component clans. To achieve an aesthetically pleasing layout, the vertices
are centered within the bounding rectangles. Since clans are defined as groups of vertices
with identical connections to the rest of the graph, clans can easily be contracted to a single
vertex. Any vertex not in the clan that was connected to a clan vertex will be connected
to the contracted vertex. By allowing segments of the graph to be contacted, the user
can simplify graphs for viewing by contracting those parts which are not relevant to her
investigation. Contracted vertices can be expanded to show the original clan configuration.

The Barycentric Method Adapted to Clans

The Barycentric method [6], a heuristic for reducing the number of edge crossings in two
consecutive levels of a graph, is modified by considering adjacent clans instead of adjacent
vertices. The process proceeds by rearranging adjacent parse tree children of the largest
unprocessed linear clan. Because groups of vertices (clans), rather than individual vertices,
are subject to rearrangement at each step, the method is much more efficient than the
standard Barycentric method.

By inspecting the structure of a graph through graph decomposition, an aesthetically pleas-
ing and natural layout of the graph vertices can be constructed. By adapting existing edge

routing techniques [5, 3, 1, 4], CG is able to draw arcs that have few unnecessary edge
crossings and that are smooth and straight.
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Maximum Planar Subgraphs and Nice Embeddings:
Practical Layout Tools

Michael Junger and Petra Mutzel *

In automatic graph drawing, a given graph has to be layed out in the plane, possibly accord-
ing to a number of topological and aesthetic constraints. Nice drawings for sparse nonplanar
graphs can be achieved by determining a maximum planar subgraph and augmenting an
embedding of this graph. Finding maximum planar subgraphs is NP-hard, and therefore
this technique appeared not to be practical.

We attack the problem with techniques of polyhedral combinatorics. The polytope PLS(G)
of GG is defined as the convex hull over all incidence vectors of planar subgraphs of G and
called the planar subgraph polytope. The problem of finding a planar subgraph P of G
with weight w(P) as large as possible can be written as the linear program max{w’z |z €
PLS(G)}, since the vertices of the polytope PLS(G) are exactly the incidence vectors of
the planar subgraphs of G. In order to apply linear programming techniques to solve this
linear program one has to represent PLS(G) as the solution of an inequality system. Due
to the NP-hardness of our problem, we cannot expect to be able to find a full description
of PLS(G) by linear inequalities. But even a partial description of the facial structure of
PLS(G) by linear inequalities is useful for the design of a “branch and cut”-algorithm,
because such a description defines a relaxation of the original problem. Such relaxations
can be solved within a branch and bound framework via cutting plane techniques and linear
programming in order to produce tight bounds. For a partial description by inequalities we
only have to concentrate on proper faces of maximal dimension of PLS((G), so-called facet-
defining inequalities. One of the main results of our investigation of the facial structure of
the planar subgraph polytope is the fact that all the subdivisions of K5 or K33 turned out
to be facet-defining for PLS(G).

We have designed a branch and cut algorithm using facet-defining inequalities for PLS(G)
as cutting planes. In a cutting plane algorithm, a sequence of relaxations is solved by linear
programming. After the solution x of some relaxation is found, we must be able to check
whether 2 is the incidence vector of a planar subgraph (in which case we have solved the
problem) or whether any of the known facet-defining inequalities are violated by . If no such
inequalities can be found, we cannot tighten the relaxation and have to resort to branching,
otherwise we tighten the relaxation by all facet-defining inequalities violated by & which we
can find. Then the new relaxation is solved, etc. The process of finding violated inequalities
(if possible) is called “separation” or “cutting plane generation”. Although the vectors x
coming up as solutions of LP-relaxations in the above outlined process have fractional
components in general, they are often useful to obtain information on how a high-valued
planar subgraph might look like. We exploit this idea with a greedy type heuristic with
respect to the solution values of the edges. So, in addition to the upper bounds w2 on the
value of a maximum planar subgraph, we also obtain a lower bound w’Z from the planar
subgraph incidence vector T derived heuristically from z. The lower bound heuristic as well
as the cutting plane generation are based on a planarity testing algorithm of Hopcroft and
Tarjan [1].

In our computational experiments we solved several problems from the literature to opti-
mality. Among them there is a graph given by Tamassia, Di Battista and Batini in a paper

*Tnstitut fir Informatik, Universitat zu Koln, Pohligstrafie 1, 50969 Koln, Germany. mjuenger@informatik.uni-
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about automatic graph drawing ([TBB88]). In order to get the maximum planar subgraph
of the graph the algorithm removed four of the 62 edges. The computation took 24 seconds
on a SUN SPARCstation 10 model 20. For the graph given by Kant in [K92] on 45 nodes
and 85 edges the algorithm found an optimum solution with 82 edges in 7 seconds.

In order to explore the limits of our branch and cut algorithm, we tested it on a series of
randomly generated graphs. We could observe that the easiest problem instances are those
on sparse graphs which are almost planar and dense graphs. We could observe that our
code is able to solve all problem instances with up to 40 edges to optimality. Even though
we cannot solve all instances of bigger sizes to optimality, our approach allows us to give
quality guarantees which state that our solutions are less than p% below the optimum,
where p is given when the computation stops after a certain amount of time. The quality
guarantee turns out to be typically less than 10% for random problems with up to 80 edges.
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Heuristics for Planarization by Vertex Splitting

Peter Eades and Xavier Mendonga

Intuitively, a vertex » may be “split” by making two copies v; and v, and attaching the
edges incident with v to either vy or vy. The operation is illustrated in Figure 1.

Figure 1: The spliting operation

This simple operation is introduced to change the graph a little to make it amenable to
layout.

Effective layout algorithms impose restrictions on the input graph structure. The two main
sources of this problem are:
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layout algorithm design. The layout algorithm is limited to special classes of graphs. For
instance, there is a wealth of layout algorithms for planar graphs; however, these
algorithms are useless for nonplanar graphs.

task difficulty. The layout task has high complexity and we must impose restrictions on
the input to be able to handle the task within reasonable computational resources. For
instance, finding a planar drawing of a graph in which all edges have length one is,
in general, NP-hard. However, when the input is restricted to trees, there are trivial
layout algorithms for this aesthetic.

The problem of transforming the input graph to conform with the restrictions is an im-
portant concern. These transformations should change the graph as little as possible so
the graph does not lose it “identity”. For instance, to “planarize” a graph we may delete
a small number of edges, or add a small number of dummy vertices (at crossings). Many
optimisation problems of minimising the number of such transformations are NP-complete
[Men93], but effective heuristics are available for some.

We are concerned with the splitting transformation described above. Manual layout tech-
niques sometimes involve making a copy of a node in order to simplify layout (see, for
example, [Lim83]). We aim to investigate the automation of layout techniques using the
splitting operation.

We are particularly interested in four basic aesthetic criteria: planarity, edge length, sym-
metry and straight line drawing.

We present a heuristic for planarization by splitting which we call SPLIT-PLANARIZF. The
SPLIT-PLANARIZE heuristic is based on Lempel, Even, and Cederbaum’s planarity test-
ing algorithm [LEC66], its implementation using PQ-trees [BL76], and the PLANARIZE
algorithm of Jayakumar, Thulasiraman and Swamy [JTS89].

We also present two other algorithms which use vertex splitting for different objectives. The
first algorithm, TENSION-SPLIT, is a heuristic which consists of a modification of a spring
system. A tension is calculated for each eligible vertex, and after each local minimization
step a vertex with high tension is split. The objective of the TENSION-SPLIT algorithm is
to produce a layout of a graph G’ (transformed from G by splitting) in which the Euclidean
distance between the pairs of vertices u and v in G’ is equal to the length of the edges uv.

Finally, an optimization criterion to perform splitting using simulated annealing is pre-
sented. This is a very interesting approach since several different criteria can be applied to
produce different embeddings.
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Planar Graph Embedding with a Specified Set of
Face-Independent Vertices

Takao Ozawa™

Introduction

It is known that there are many ways, in general, to embed a biconnected planar graph in
the plane. In this paper we introduce a new graph embedding problem as defined below,
and give a very efficient solution algorithm to it. Let GG be a biconnected planar graph with
vertex set V.

Problem FIVS-EMB: Given a subset U of V, find, if possible, an embedding of G in the
plane such that no two vertices of U appear on a face boundary(each vertex in Uis covered
by a distinct face).

In graph theory two vertices are said mutually independent if they are not the end vertices
of an edge. Extending the concept of independence in relation with edges to that in relation
with faces, we say that two vertices not appearing on a face boundary are face-independent.
If we want some edges, in addition to vertices, being face-independent, we only have to place
a new vertex on each of the edges so that each edge is converted to a series connection of
two edges incident to the new vertex, and then include the newly-added vertices in U. In
integrated circuit layout it may happen that some elements should not be placed closely to
avoid mutual interference. We can say that the graph embedding of FIVS-EMB takes such
a constraint into consideration in a simplified way.

Solution Algorithm

Our solution algorithm to problem FIVS-EMB is based on the vertex addition algorithm for
planarity testing [1], and is implemented using PQ-trees [2]. The vertices of G are labeled
with the st-numbers, and thus we have V={1, 2, .., n} where n is the number of vertices
in V. Let G} be the subgraph of G induced by the vertex set Vi ={1,2,..,k}. Roughly
speaking, the vertex addition algorithm successively embeds G} for k=1, 2, .., n in the
plane.

Now, a vertex pair {z,y}({z,y} is not equal to {I,n}) is called a separation pair if the
removal of the pair results in a disconnected graph. Let C'be a connected component of the
resultant graph containing vertices whose st-numbers are between z and y. The subgraph
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of G which is obtained by adding = and y to C'is called an {z,y}-split component. There
may be two or more split components for the pair {z,y}, and there may be an edge or
edges connecting vertices z and y. Let S(z,y) be the set which consists of all {z,y}-split
components and edges connecting z and y, if any. Different embedding can be obtained
by the following operations. (1) permutation: changing the embedding order of the split
components and edges belonging to S(z,y), and (2) reflection: reflecting biconnected split
components in S(z,y).

For PQ-trees operations on nodes corresponding to the above operations on S(z,y) are
defined. A subgraph formed by S(z,y) with a fixed embedding order of split components
and edges in it is called a composite split component.

In our solution algorithm we try to find an embedding of Gj which satisfies the condition
of problem FIVS-EMB. Difficulty arises when there are two or more ways of embedding
satisfying the condition and the entire embedding of G can not be finalized. We present two
major sub-algorithms coping with this difficulty. The first one of them finds, by applying
the operations of permutation and reflection, the most desirable embedding of G} while
leaving some part of the embedding undecided. In order to implement this sub-algorithm
labels which indicate the existence of vertices in U on the boundaries of split or composite
split components, are attached to the nodes of the PQ-tree representing Gy, and the sub-
algorithm finds the most desirable labels of nodes while bubbling up the PQ-tree. The
second major sub-algorithm decides, using an auxiliary bipartite graph, the embedding
of split or composite split components which are previously formed and contained in the
relevant split component, but whose embedding has not been finalized. We also present a
sub-algorithm for finding the vertices contained in a split component while dealing with
PQ-trees. This sub-algorithm is necessary for carrying out the second major sub-algorithm
mentioned above.

The time complexity and the space complexity of our solution algorithm are both O(n).
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Implementation of the Planarity Testing Algorithm by
Demoucron, Malgrange and Pertuiset

Bjorn Sigurd Benestad Johansen *

Previous Planarity Algorithms. Hopcroft & Tarjan [1] and Booth & Leuker [2] have
presented (quite complicated) linear planarity algorithms. A much simpler algorithm has
been presented by Demoucron et al [3]. The algorithms by Hopcroft & Tarjan and Demou-
cron et al will be referred to henceforth as HT and DMP respectively.

Although DMP is basically simple, it is abstract, and no data structures or details are
given. The goal of this authors implementation of DMP, DMP-HT, has been to provide a
fast—yet—simple planarity algorithm model.

A Straightforward Implementation of DMP. As described in Bondy & Murty [4], a
straight—forward implementation of DMP requires sub-routines for:

1) Finding a cycle in the input-graph G.

2) Determining the fragments (in Bondy&Murty called bridges) of G; in @ and their vertices
of attachment to G;, where G is a plane subgraph of G.

3) Determining the boundary of each region in G;.

4) Determining, for each fragment F', the regions of G; where F is drawable.

5) Finding a path p in some fragment F' of G;, between two of F’’s Vertices of Attachment.

Previous Implementations of DMP. Rubin [5] has given an O(n?) implementation
of DMP, implementing to a large extent the 5 Sub-routines above. Rubin claims that his
implementation compares favorably to HT, when run on a class of maximum planar test—
graphs. Yeh [6] has subsequently investigated practical improvements to the implementation

by Rubin.

DMP-HT. HT and DMP both include paths, one at a time, in the plane embedding
being built. This observation led to DMP-HT in which techniques from HT partly are used
to implement DMP.

DMP-HT utilize a totally different approach then the ones from Bondy&Murty and Ru-
bin/Yeh. DMP-HT is based on a linear Initial Phase and a Test Phase.

Initial Phase. The first part of the Initial Phase is almost identical to the first part of HT.
(That is, two values are computed for each vertex, and the adjacency lists are sorted.)
Then the input—graph G is transformed to a tree T, where the vertices in T represent
edge—disjoint subgraphs of G, and the union of the subgraphs equals . The Initial Phase
removes the need for explicitly implementing any of the 5 Sub-routines above.

Test Phase. A plane embedding G is (implicitly) being built. As in DMP, G, is initially
empty, then a cycle is (implicitly) added, then one and one path is (implicitly) added. The
inclusion of a path p through a fragment F in a region 7 of G; will essentially only require:

Loopl. Determine the truth value of one or two statements and performing three or four
imperatives for each new fragment emerging as a result of the the inclusion of p in Gj.

*Department of Informatics, University of Oslo, Norway. bjornjoh@ifi.uio.no
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Loop2. Determine the truth value of one or two statements and performing two or four
imperatives for each fragment (# F') which was drawable in r.

Comparison with HT. DMP-HT and HT seem to contain approximately the same
number of lines of code.

DMP-HT has not been programmed in the same language and on the same computer as
in [1]. Programmed in Simula on a Sparc—10, DMP-HT tested maximum planar graphs
with 1000 vertices in approximately 2.5 seconds. This is probably inferior to HT, but may
be satisfactory for practical purposes. But DMP—HT has a worst—case time ratio of O(n?),
and for special graphs unsatisfactory results may occur. As in HT, the space requirements
are of order O(n).

DMP-HT may be viewed as conceptually simpler then HT, even though the proof of DMP-
HT is fairly long. The proof shows, that a fragment F which is drawable in preferably only
one region is directly accessible, that a path p through F'is directly accessible from 7, and
that new fragments (see Loopl) are also directly accessible from 7', how new edges can be
added to G thus maintaining only sorted regions, and how the fact that all regions sorted
can be utilized when determining in which regions new (Loopl) and old (Loop2) fragments
are drawable. In DMP-HT every fragment will be determined as drawable in a maximum
of two regions, and the inclusion of a path in G; will result in three (rather then two) new
regions. This will reduce the expected average number of drawable fragments in each region,
thus reducing the expected running time of DMP-HT.

Also, DMP-HT directly tests graphs containing cut—vertices, and a plane embedding is
implicitly given. An expansion to explicitly give a plane embedding in terms of regions seems
to be straightforward. This plane embedding may also be constructed in a static fashion:
Every path included in the plane embedding being built, can be embedded permanently in
the plane.

Testresults. DMP-HT was tested empirically on two classes of planar graphs:

Class 1. Construction of a 2—connected planar graph consisting of n,n > 3, vertices: First
a cycle consisting of between (randomly) 3 and maxz(3, %) vertices was generated. Then, a
random region r was repeatedly chosen to include a vertex v in r, and to generate an edge
between v and a vertex in the boundary V(r) of » with the probability % If deg(v) < 2
prevails, delete all the edges incident with v, and repeatly generate edges as above until
deg(v) > 2. Finally, all the adjacency lists are to be randomized.

Class II. Maximum planar graphs were generated as above, with the exception that the
initial cycle contained exactly 3 vertices, and exactly 3 new edges were generated when one
vertex v was included in a random region 7.

DMP-HT was empirically tested on 1,000 graphs generated from each of the two classes.
Each of the graphs contained between 1,000 and 100,000 vertices. For each graph G the
number of repetitions of the interior loops (Loopl and Loop2) was counted, and plotted
against |E(G)|. As can be seen, DMP-HT behave in an almost linear manner for these
graphs:
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a) “Random” Planar Graphs b) “Random” Maximal Planar Graphs
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In the complete paper, DMP-HT methodology is presented, validation of DMP-HT is given,
and a complete implementation of DMP-HT is presented, assuming that the graph to be
tested for planarity is stored on file as a set of adjacency—lists.
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A Unified Approach to Testing, Embedding and Drawing
Planar Graphs

Joel Small *

Let G = (V, E) be a simple, undirected graph with vertex set V and edge set F. We first
offer improvements to Williamson’s version of the Hopcroft-Tarjan (HT) planarity testing
algorithm while maintaining the O(n) execution time. Then, with the data structures and
graph embedding in place from this algorithm, we augment the data structures and use
the computed embedding to calculate and draw a rectilinear layout of the graph. The
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algorithms for augmenting data structures and drawing the graph run in O(n) time as well.
Furthermore, the augmented data structures lend themselves to efficiently generating many
nonisomorphic drawings.

The planarity testing algorithm exploits the bridge-cycle recursion for biconnected graphs
introduced by HT. Briefly the idea is to choose a cycle C'in G. Edges in E(G) (the edge
set of ) not in E(C) are called the simple bridges of G with respect to C'if both endpoints
lie on C. Remove (' together with all edges incident to C from G. The resulting graph is
a collection of connected components. These components together with the simple bridges
are called the bridges of G with respect to C. In any plane drawing of G, the cycle C will
partition the plane into two regions, a finite and an infinite region. Each bridge must lie
entirely in one region. The bridge graph of G with respect to C, denoted BRGR(G,C), is a
graph whose vertices are the bridges of G with respect to C. There is an edge between two
vertices By and By in BRGR(G,C) if By and B; must be drawn on opposite sides of C'in
any plane drawing of . The idea for an efficient algorithm to test if G is planar will be to
choose a cycle () then construct the bridges of G with respect to €. Add edges from C'to
each bridge to make it biconnected (these are called the augmented bridges), and recursively
test each augmented bridge to determine if it is planar. Finally compute BRGR( G, C) and
check that this graph is bipartite. If it is then this gives a valid means for locating the
bridges about C'to get an embedding of G.

The bridge-cycle recursion is exemplified by a data structure called the pathtree of G,
denoted PATR(G,T),[3, Def. 7.14]. T'is a lineal spanning tree of the graph G. PATR(G,T)
is a rooted, ordered tree whose vertices are paths in G defined using 7. The vertices of this
tree define a partition for both the vertex set V() and the edge set E(G). PATR(G,T)
can be traversed in postorder to test the graph for planarity. We offer some improvements
to previous versions of algorithms for traversing the pathtree. These improvements are
primarily in computing and maintaining the spanning forests for bridge graphs and in
simplifying the tests necessary to update the spanning forests when adding new vertices to
the bridge graph. This work has facilitated the actual implementation of the algorithms.

As a part of the planarity testing, vertices of the pathtree can be colored to define an
embedding for the graph if it is planar, or identify an obstruction if it is not. If the graph
is planar, we show how to augment the pathtree and use this augmented pathtree to draw
a rectilinear layout of the graph where vertices are represented by horizontal intervals and
edges are drawn using vertical intervals (also called a weak visibility representation in [2]).
The edge partition defined by the pathtree is maintained in the drawing by placing edges in
the same block on the same vertical line. The general idea to obtain the drawing is described
next.

Suppose we are given a planar graph G along with a PATR( G, T) that has been colored to
identify a planar embedding. We assign a left-right orientation to the vertices of the pathtree
that identifies the orientation of the paths as they are drawn in the plane. Next, we can use
the PATR(G,T) in conjunction with the orientation to assign a valid st numbering to the
vertices. Finally, we compute the horizontal placement for the vertices (paths of () of the
pathtree. Vertices of the graph (' are placed vertically according to their st number. We
plan to describe the algorithms to accomplish the drawings in more detail at the meeting.

We have written a versatile, interactive graph software package called GAP, a Graph Anal-
ysis Program, to study graphs and graph algorithms. Versions are available for both PCs
and SUN workstations. The data structures and algorithms we describe for testing, embed-
ding and drawing planar graphs have been implemented as part of this package. The five
primary components for doing this are to perform a depth first search and compute low
numbers (DFS), sort the vertices using a lexicographic bucket sort (LEXSORT), compute
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the pathtree (PATR), build the spanning forests for bridge graphs and test for odd cycles
(PLTEST), and last, augment the pathtree and compute a rectilinear layout (RECDRAW).
We ran the program on maximal planar graphs generated according to the following algo-
rithm:

procedure RandomGraph( Graph G, NumberOfVertices nv )

1. G« Ks3

2. tv—3

3. While tv < nv do

3.1 Select a face f at random.

3.2 Add a new vertex v to G.

3.3 tv «— tv + 1.

3.4 Add edges {v,w1}, {v,wz}, {v,ws} to G, where
w1, we, w3 are the vertices lying on f.

3.5 Update the list of faces of G

The table below shows the mean time, in seconds, for each of the components on 100
maximal planar graphs having 500, 1000, 2000, 4000 and 8000 vertices.

V] | DFS | LEXSORT | PATR | PLTEST | RECDRAW | TOTAL

500 [0.04 | 0.22 0.18 [0.49 0.07 1.00

1000 | 0.09 | 0.45 040 |1.03 0.14 2.11

2000 | 0.18 | 0.95 0.80 [2.05 0.30 4.28

4000 | 0.36 | 1.99 1.73 | 4.61 0.60 9.29

8000 | 0.73 | 3.92 2.47 ]9.88 1.10 18.10
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A Simple Linear-Time Algorithm for Embedding Maximal
Planar Graphs

Hermann Stamm-Wilbrandt*

Introduction

All existing algorithms for planarity testing / planar embedding can be grouped into two
principal classes. Either, they run in linear time, but to the expense of complex algorithmic
concepts or compler data-structures, or they are easy to understand and implement, but
require more than linear time ([1]).

In this paper, a new linear-time algorithm for embedding maximal planar graphs is pro-
posed. This algorithm is both easy to understand and easy to implement. The algorithm
consists of two phases, both of which use only simple, local graph-modifications.

In addition to planar embedding, the new algorithm allows to test graphs for maximal
planarity. We will also demonstrate how to generate random (mazimal) planar graphs using
this algorithm. The algorithm proposed constitutes a first step towards a simple, linear-time
solution for embedding general planar graphs.t A full version of this abstract may be found
in [5]. Notice that our results make use of a seminal paper dealing with planar 3-bounded
orientations by Chrobak and Eppstein [2].

One of the referees made us aware of a paper by R.C. Read [4].}

Basic definitions

The terminology used in this paper is adopted from [3]. Let G = (V, F) be a planar graph,
and ADJ[v] for all v € V denote the adjacency lists of G. An embedding of G is defined
as an ordering of the adjacency lists of GG, such that for each vertex v € V the order of
the edges in ADJ[v] corresponds to a counter-clockwise traversal of the edges in any fixed
embedding of G in the plane. A simple planar graph is called mazimal planar, if the addition
of any new edge results in a non-planar graph. The smallest maximal planar graph w.r.t.
the number of vertices is defined as the complete (maximal planar) graph on 4 vertices K.
Thus, a maximal planar graph does not contain any vertex of degree less than 3. This is
because such graphs are triconnected. The triconnectivity also enforces a unique embedding
in the plane w.r.t. a chosen outer face.

A key concept for the new algorithm is the notion of reducible vertices:

Definition 1 A vertex v of G = (V, I) will be called small, if deg(v) < 18, otherwise it will
be called large. A vertex v € V' is reducible if it satisfies one of the following conditions: (a)
deg(v) < 3 or (b) deg(v) = 4 and v has at least 2 small neighbors, or (¢) deg(v) =5 and v
has at least 4 small neighbors.

*Institut fiir Informatik III, Universitit Bonn. hermann@holmium.informatik.uni-bonn.de

TThis goal has been recognized as a siginificant open problem in [1].

{His methods are similar to those described here, but they need a (topological) embedding of the input graph,
and they compute a straight line drawing of it in linear time and quadratic space. Our algorithm runs in linear
time and linear space, determines the (topological) embedding and can additionally incorporate Read’s coordinate
determination naturally to result in an embedding in the plane
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