Drawing Simultaneously Embedded Graphs with Few Bends

Luca Grilli

Seokhee Hong Jan Kratochvíl

THE UNIVERSITY OF

SYDNEY

Ignaz Rutter

GD 2014 · September 23, 2014

Given: Sequence of graphs G_1, \ldots, G_k Task: Find sequence of drawings $\Gamma_1, \ldots, \Gamma_k$ such that

- each Γ_i is a good drawing of G_i
- $G_i \cap G_{i+1}$ is drawn similar in Γ_i and Γ_{i+1}

Given: Sequence of graphs G_1, \ldots, G_k Task: Find sequence of drawings $\Gamma_1, \ldots, \Gamma_k$ such that **planar**

- each Γ_i is a **good** drawing of G_i the same $G_i \cap G_{i+1}$ is drawn straight in Γ_i and Γ_{i+1}

Given: Sequence of graphs G_1, \ldots, G_k Task: Find sequence of drawings $\Gamma_1, \ldots, \Gamma_k$ such that

- each Γ_i is a good drawing of G_i the same
- $G_i \cap G_{i+1}$ is drawn surfight in Γ_i and Γ_{i+1}

Two drawing styles:

- straight-line (SIMULTANEOUS GEOMETRIC EMBEDDING)
- topological (SIMULTANEOUS EMBEDDING WITH FIXED EDGES)

Given: Sequence of graphs G_1, \ldots, G_k Task: Find sequence of drawings $\Gamma_1, \ldots, \Gamma_k$ such that

- each Γ_i is a good drawing of G_i the same
- $G_i \cap G_{i+1}$ is drawn straight in Γ_i and Γ_{i+1}

Two drawing styles:

- straight-line (SIMULTANEOUS GEOMETRIC EMBEDDING)
- topological (SIMULTANEOUS EMBEDDING WITH FIXED EDGES)

Restrict to k = 2.

Existence of SGE:

Non-Existence of SGE:

Existence of SGE: both maxdeg-2

[Duncan, Eppstein, Kobourov '04]

Non-Existence of SGE:

Existence of SGE: both maxdeg-2

two caterpillars

[Duncan, Eppstein, Kobourov '04]

[Brass et al. '07]

Non-Existence of SGE: two outerplanar graphs three paths

[Brass et al. '07]

Existence of SGE: both maxdeg-2

two caterpillars

[Duncan, Eppstein, Kobourov '04]

[Brass et al. '07]

Non-Existence of SGE: two outerplanar graphs three paths two trees

[Brass et al. '07]

[Geyer, Kaufmann, Vrto '07]

Existence of SGE: both maxdeg-2	[Duncan, Eppstein, Kobourov '04]
two caterpillars	[Brass et al. '07]
wheel + cycle	٦
tree + matching	[Cabello et al. '11]
outerpath + matching	J
Non-Existence of SGE: two outerplanar graphs three paths two trees matching + planar graph six matchings	<pre> } [Brass et al. '07] [Geyer, Kaufmann, Vrto '07] } [Cabello et al. '11]</pre>

Existence of SGE: both maxdeg-2	[Duncan, Eppstein, Kobourov '04]
two caterpillars	[Brass et al. '07]
wheel + cycle	٦
tree + matching	[Cabello et al. '11]
outerpath + matching	J
depth-2 tree + path	[Angelini et al. '12]
Non-Existence of SGE: two outerplanar graphs three paths two trees matching + planar graph six matchings depth-4 tree + (edge-disjoint) path	Figure State in the second state of the second state in the second state of the second state is a second state of the secon

Existence of SGE:	[Duncan Epoctain Kabauray '04]
two catornillars	[Duncan, Eppstein, Kobourov 04]
tree + matching	Cabello et al. '11]
outerpath + matching	
depth-2 tree + path	[Angelini et al. '12]
Non-Existence of SGE:	
two outerplanar graphs three paths	Brass et al. '07]
two trees	[Geyer, Kaufmann, Vrto '07]
matching + planar graph six matchings	<pre>{ [Cabello et al. '11]</pre>
depth-4 tree + (edge-disjoint) path	[Angelini et al. '12]
NP-complete.	[Estrella-Balderrama et al. '08]

Existence of SGE:	
both maxdeg-2 [Duncan, Eppstein, Kobourov '04]
two caterpillars	[Brass et al. '07]
wheel + cycle)
tree + matching	[Cabello et al. '11]
outerpath + matching	J
depth-2 tree + nath	[Angolini et al. '12]
No testing algorithm for any non-trivi	al class of graphs!
two outerplanar graphs	
three paths	$\{Brass et al. 07\}$
two trees	[Geyer, Kaufmann, Vrto '07]
matching + planar graph	} [Cabello et al. '11]
six matchings	
depth-4 tree + (edge-disjoint) path	[Angelini et al. '12]
NP-complete.	[Estrella-Balderrama et al. '08]

Existence of SEFE:

Non-Existence of SEFE:

3 L. Grilli, S. Hong, J. Kratochvíl, <u>I. Rutter</u> – Drawing Simultaneously Embedded Graphs with Few Bends

Existence of SEFE: tree + path

[Erten, Kobourov '05]

Non-Existence of SEFE:

3 L. Grilli, S. Hong, J. Kratochvíl, <u>I. Rutter</u> – Drawing Simultaneously Embedded Graphs with Few Bends

Existence of SEFE:

tree + path

tree + planar graph

pseudo-forest + planar graph, common graph is forest

Non-Existence of SEFE: two outerplanar graphs

[Frati '06]

[Frati '06]

[Erten, Kobourov '05]

Existence of SEFE:

tree + path

tree + planar graph

pseudo-forest + planar graph, common graph is forest

[Erten, Kobourov '05]

[Frati '06]

Non-Existence of SEFE: two outerplanar graphs three paths

[Frati '06]

[Brass et al. '07]

Existence of SEFE:	
tree + path	[Erten, Kobourov '05]
tree + planar graph	
pseudo-forest + planar graph, common graph is forest	
outerplanar graph + cycle two outerplanar graphs, common graph is path	[Di Giacomo, Liotta '07]
G_1 has disjoint cycles, common graph is forest	[Fowler et al. '11]
Non-Existence of SEFE:	
two outerplanar graphs	[Frati '06]
three paths	[Brass et al. '07]

Existence of SEFE:	
tree + path	[Erten, Kobourov '05]
tree + planar graph	
pseudo-forest + planar graph, common graph is forest	
outerplanar graph + cycle	[Di Giacomo, Liotta '07]
two outerplanar graphs, common graph is path \int	
G_1 has disjoint cycles, common graph is forest	[Fowler et al. '11]
Non-Existence of SEFE:	
two outerplanar graphs	[Frati '06]
three paths	[Brass et al. '07]
Characterization of	
• G_1 always admitting a SEFE	[Fowler et al. '09]
common graphs always admitting a SEFE	[Jünger, Schulz '09]

Existence of SEFE:	
tree + path	[Erten, Kobourov '05]
tree + planar graph	
pseudo-forest + planar graph, common graph is forest	
outerplanar graph + cycle	[Di Giacomo Liotta '07]
two outerplanar graphs, common graph is path \int	
G_1 has disjoint cycles, common graph is forest	[Fowler et al. '11]
Non-Existence of SEFE:	
two outerplanar graphs	[Frati '06]
three paths	[Brass et al. '07]
Characterization of	
• G_1 always admitting a SEFE	[Fowler et al. '09]
 common graphs always admitting a SEFE 	[Jünger, Schulz '09]
NP-complete for three graphs.	[Gassner et al. '06]

Existence of SEFE:	
tree + path	[Erten, Kobourov '05]
tree + planar graph	
pseudo-forest + planar graph, common graph is forest	
outerplanar graph + cycle	[Di Giacomo Liotta '07]
two outerplanar graphs, common graph is path \int	
G ₁ has Complexity for two graphs open	t al. '11]
Non-E But: Several algorithms for restricted	cases.
two outerplanar graphs	[Frati '06]
three paths	[Brass et al. '07]
Characterization of	
• G_1 always admitting a SEFE	[Fowler et al. '09]
 common graphs always admitting a SEFE 	[Jünger, Schulz '09]
NP-complete for three graphs.	[Gassner et al. '06]

Characterization ([Jünger, Schulz '09]) G_1 and G_2 with common graph G admit SEFE \Leftrightarrow there exist planar embeddings \mathcal{E}_1 , \mathcal{E}_2 of G_1 , G_2 with $\mathcal{E}_1|_G = \mathcal{E}_2|_G$.

Characterization ([Jünger, Schulz '09])

$\mathsf{SEFE}\ \mathsf{drawing} \Leftrightarrow \mathsf{SEFE}\ \mathsf{embedding}$

4 L. Grilli, S. Hong, J. Kratochvíl, I. Rutter – Drawing Simultaneously Embedded Graphs with Few Bends

Characterization ([Jünger, Schulz '09])

SEFE drawing \Leftrightarrow SEFE embedding

Efficient algorithms for finding SEFE embedding:

G biconnected G is a star

[Haeupler et al. 13], [Angelini et al. '12] [Angelini et al. '12]

Characterization ([Jünger, Schulz '09])

SEFE drawing \Leftrightarrow SEFE embedding

Characterization ([Jünger, Schulz '09])

SEFE drawing \Leftrightarrow SEFE embedding

Characterization ([Jünger, Schulz '09])

SEFE drawing \Leftrightarrow SEFE embedding

Efficient algorithms for finding SEFE embedding:			
G biconnected	[Haeupler et al.	13], [Angelini et al. '12]	
G IS a star		[Angelini et al. 12]	
common graph has maxdeg 2 components of common graph have fixed	embedding	} [Bläsius, R. '12]	
components of common graph biconnecte	ed / subcubic	[Schaefer '12] [Bläsius, Karrer, R. '13]	
both biconnected, common graph connec	ted	[Bläsius, R. '13]	

Characterization ([Jünger, Schulz '09])

$\mathsf{SEFE}\ \mathsf{drawing} \Leftrightarrow \mathsf{SEFE}\ \mathsf{embedding}$

Efficient algorithms for finding SEFE embedding:			
G biconnected G is a star	[Haeupler et al. 13], [Angelini et al. '12] [Angelini et al. '12]		
common graph has maxdeg 2 components of common graph have fixed	embedding } [Bläsius, R. '12]		
components of common graph biconnected	ed / subcubic [Schaefer '12] [Bläsius, Karrer, R. '13]		
both biconnected, common graph connec	ted [Bläsius, R. '13]		

Given a SEFE embedding, how do we get a good SEFE drawing?

In particular: How many bends per edge for polyline drawings?

Drawing SEFE Embeddings

Can test existence/find SEFE Embedding for a lot of graphs.

• How do we obtain a nice SEFE Drawing from the SEFE Embedding?

Drawing SEFE Embeddings

Can test existence/find SEFE Embedding for a lot of graphs.

How do we obtain a nice SEFE Drawing from the SEFE Embedding?

If common graph has no edges, three bends per edge suffice. [Erten, Kobourov '05]

Draw one graph straight line, the other O(|V(G)|) bends. [Haeupler, Jampani, Lubiw '11] [Chan, Frati, Gutwenger, Lubiw, Mutzel, Schaefer '14] Can test existence/find SEFE Embedding for a lot of graphs.

How do we obtain a nice SEFE Drawing from the SEFE Embedding?

If common graph has no edges, three bends per edge suffice. [Erten, Kobourov '05]

Draw one graph straight line, the other O(|V(G)|) bends. [Haeupler, Jampani, Lubiw '11] [Chan, Frati, Gutwenger, Lubiw, Mutzel, Schaefer '14]

 (c_1, c_2) -drawing: common edges $\leq c_1$ bends, exclusive $\leq c_2$ bends. What value pairs are possible for every SEFE Embedding?

G induced subgraph of G_1 , G_2 ?

		induced	general
f D	2-connected		
/ity o	connected		
sctiv	components are		
θUL	2-connected		
COL	arbitrary		

G induced subgraph of G_1 , G_2 ?

		induced	general
f G	2-connected	(0,0)-drawing	
vity o	connected		
ctiv	components are		
มาย	2-connected		
COL	arbitrary		

G induced subgraph of G_1 , G_2 ?

		induced	general
nectivity of G	2-connected	(0, 0)-drawing	
	connected	(0, 1)-drawing	
	components are		
	2-connected		
COL	arbitrary		

handling cutvertices in induced instances costs **1 bend**

G induced subgraph of G_1 , G_2 ?

		induced	general
nnectivity of G	2-connected	(0, 0)-drawing —	(0, 1)-drawing
	connected	(0, 1)-drawing -	(0, 3)-drawing
	components are		
	2-connected		
COL	arbitrary		

handling cutvertices in induced instances costs 1 bend
 dropping induced makes c bends into 2c+1 bends

G induced subgraph of G_1 , G_2 ?

		induced	general
inectivity of G	2-connected	(0, 0)-drawing —	(0, 1)-drawing
	connected	(0, 1)-drawing —	(0, 3)-drawing
	components are 2-connected	(0, 3)-drawing	
COL	arbitrary		

handling cutvertices in induced instances costs 1 bend
 dropping induced makes c bends into 2c+1 bends

G induced subgraph of G_1 , G_2 ?

		induced	general
connectivity of G	2-connected	(0, 0)-drawing —	(0, 1)-drawing
	connected	(0, 1)-drawing -	(0, 3)-drawing
	components are 2-connected	(0, 3)-drawing —	(0, 7)-drawing
	arbitrary	(0, 4)-drawing -	(0, 9)-drawing

handling cutvertices in induced instances costs 1 bend
 dropping induced makes c bends into 2c+1 bends

G induced subgraph of G_1 , G_2 ?

		induced	general
connectivity of G	2-connected	(0, 0)-drawing —	(0, 1)-drawing
	connected	(0, 1)-drawing -	(0, 3)-drawing
	components are 2-connected	(0, 3)-drawing —	(0, 7)-drawing
	arbitrary	(0, 4)-drawing	(0, 9)-drawing

Results on (0, 0)- and (0, 1)-drawings are tight.

		induced	general
inectivity of G	2-connected	(0, 0)-drawing —	(0, 1)-drawing
	connected	(0, 1)-drawing -	(0, 3)-drawing
	components are 2-connected	(0, 3)-drawing —	(0, 7)-drawing
cor	arbitrary	(0, 4)-drawing	(0, 9)-drawing

- Results on (0, 0)- and (0, 1)-drawings are tight.
- O(n)-Algorithm for SGE when common graph is biconnected, induced.

		induced	general
connectivity of G	2-connected	(0, 0)-drawing —	(0, 1)-drawing
	connected	(0, 1)-drawing -	(0, 3)-drawing
	components are 2-connected	(0, 3)-drawing —	(0, 7)-drawing
	arbitrary	(0, 4)-drawing -	(0, 9)-drawing

- Results on (0, 0)- and (0, 1)-drawings are tight.
- O(n)-Algorithm for SGE when common graph is biconnected, induced.
- Results for G (bi-)connected apply to SEFE of several graphs with sunflower intersection.

		induced	general
connectivity of G	2-connected	(0, 0)-drawing —	(0, 1)-drawing
	connected	(0, 1)-drawing -	(0, 3)-drawing
	components are 2-connected	(0, 3)-drawing —	(0, 7)-drawing
	arbitrary	(0, 4)-drawing -	(0, 9)-drawing

- Results on (0, 0)- and (0, 1)-drawings are tight.
- O(n)-Algorithm for SGE when common graph is biconnected, induced.
- Results for G (bi-)connected apply to SEFE of several graphs with sunflower intersection.
- SEFE Embedding of *k* graphs with sunflower intersection may require $c \in \Omega(\sqrt{2}^k/k)$ for a (0, *c*)-drawing

Outline

- 1. SEFE Drawings when the common graph is (bi-)connected
- 2. The general case
- 3. Lower bounds

Outline

- 1. SEFE Drawings when the common graph is (bi-)connected
- 2. The general case
- 3. Lower bounds

plane graph \equiv planar graph with fixed embedding

plane supergraph of $G \equiv$ plane graph H that (i) is a supergraph of G, (ii) respects the embedding of H.

G

plane graph \equiv planar graph with fixed embedding

plane supergraph of $G \equiv$ plane graph H that (i) is a supergraph of G, (ii) respects the embedding of H.

G

A straight-line drawing Γ of a plane graph G is

k-universal: can be extended to *k*-bend drawing of every plane supergraph induced *k*-universal: can be extended to a *k*-bend drawing of every plane supergraph that contains *G* as an induced subgraph.

plane graph \equiv planar graph with fixed embedding

plane supergraph of $G \equiv$ plane graph H that (i) is a supergraph of G, (ii) respects the embedding of H.

G

A straight-line drawing Γ of a plane graph G is

k-universal: can be extended to *k*-bend drawing of every plane supergraph induced *k*-universal: can be extended to a *k*-bend drawing of every plane supergraph that contains *G* as an induced subgraph.

Induced k-universal $\Rightarrow 2k + 1$ -universal

plane graph \equiv planar graph with fixed embedding

plane supergraph of $G \equiv$ plane graph H that (i) is a supergraph of G, (ii) respects the embedding of H.

G

A straight-line drawing Γ of a plane graph G is

k-universal: can be extended to *k*-bend drawing of every plane supergraph induced *k*-universal: can be extended to a *k*-bend drawing of every plane supergraph that contains *G* as an induced subgraph.

Induced *k*-universal \Rightarrow 2*k* + 1-universal

Universal drawings solve SEFE-Drawing "by definition":

- 1. Take (induced) k-universal drawing of common graph G
- 2. Independently extend drawing to *k*-bend drawing of G_1 , $G_2 \rightarrow (0, k)$ -drawing

plane graph \equiv planar graph with fixed embedding

plane supergraph of $G \equiv$ plane graph H that (i) is a supergraph of G, (ii) respects the embedding of H.

G

A straight-line drawing Γ of a plane graph G is

k-universal: can be extended to *k*-bend drawing of every plane supergraph induced *k*-universal: can be extended to a *k*-bend drawing of every plane supergraph that contains *G* as an induced subgraph.

Induced *k*-universal \Rightarrow 2*k* + 1-universal

Universal drawings solve SEFE-Drawing "by definition":

- 1. Take (induced) *k*-universal drawing of common graph *G*
- 2. Independently extend drawing to *k*-bend drawing of G_1 , $G_2 \rightarrow (0, k)$ -drawing **Do they even exist?!**

Theorem

Every biconnected planar graph has an induced 0-universal drawing.

Proof: take star-shaped drawing

Theorem

Every biconnected planar graph has an induced 0-universal drawing.

- Proof: take star-shaped drawing
- for plane supergraph consider subgraph embedded in each face independently

Theorem

Every biconnected planar graph has an induced 0-universal drawing.

- Proof: take star-shaped drawing
- for plane supergraph consider subgraph embedded in each face independently
- triangulate by adding vertices (internally triconnected)

Theorem

Every biconnected planar graph has an induced 0-universal drawing.

- Proof: take star-shaped drawing
- for plane supergraph consider subgraph embedded in each face independently
- triangulate by adding vertices (internally triconnected)
 Internally triconnected planar graph, outer face fixed to starshaped-polygon
 \Rightarrow can be extended without bends [Hong, Nagamochi '08]

Theorem

Every biconnected planar graph has an induced 0-universal drawing.

- Proof: take star-shaped drawing
- for plane supergraph consider subgraph embedded in each face independently
- triangulate by adding vertices (internally triconnected)
 Internally triconnected planar graph, outer face fixed to starshaped-polygon
 - \Rightarrow can be extended without bends [Hong, Nagamochi '08]

Corollary

SEFE Embedding with G biconnected + induced admits (0, 0)-drawing.

Theorem

Every biconnected planar graph has an induced 0-universal drawing.

- Proof: take star-shaped drawing
- for plane supergraph consider subgraph embedded in each face independently
- triangulate by adding vertices (internally triconnected)
- Internally triconnected planar graph, outer face fixed to starshaped-polygon
 - \Rightarrow can be extended without bends [Hong, Nagamochi '08]

Corollary

SEFE Embedding with G biconnected + induced admits (0, 0)-drawing.

Corollary

Every biconnected planar graph has a 1-universal drawing. SEFE Embedding with *G* biconnected admits (0, 1)-drawing.

		induced	general
connectivity of G	2-connected	(0,0)-drawing	(0, 1)-drawing
	connected	(0, 1)-drawing	(0, 3)-drawing
	components are 2-connected	(0,3)-drawing	(0, 7)-drawing
	arbitrary	(0, 4)-drawing	(0,9)-drawing

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof:

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof: add angle vertices at all angles of cutvertices of G resulting graph G' is biconnected

 \Rightarrow has induced 0-universal drawing

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof: add angle vertices at all angles of cutvertices of G resulting graph G' is biconnected

 \Rightarrow has induced 0-universal drawing take subdrawing of G

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof: add angle vertices at all angles of cutvertices of G resulting graph G' is biconnected

 \Rightarrow has induced 0-universal drawing take subdrawing of G

Consider plane supergraph H of G.

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof: add angle vertices at all angles of cutvertices of G resulting graph G' is biconnected

 \Rightarrow has induced 0-universal drawing take subdrawing of G

Consider plane supergraph H of G.

Consider G', at cutvertices reconnect H-edges to angle vertices.

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof: add angle vertices at all angles of cutvertices of G resulting graph G' is biconnected

 \Rightarrow has induced 0-universal drawing take subdrawing of G

Consider plane supergraph H of G.

Consider G', at cutvertices reconnect H-edges to angle vertices.

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof: add angle vertices at all angles of cutvertices of G resulting graph G' is biconnected

 \Rightarrow has induced 0-universal drawing take subdrawing of G

Consider plane supergraph H of G.

Consider G', at cutvertices reconnect H-edges to angle vertices.

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof: add angle vertices at all angles of cutvertices of G

resulting graph G' is biconnected

 \Rightarrow has induced 0-universal drawing take subdrawing of *G*

Consider plane supergraph H of G.

Consider G', at cutvertices reconnect H-edges to angle vertices.

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof: add angle vertices at all angles of cutvertices of G

resulting graph G' is biconnected

 \Rightarrow has induced 0-universal drawing take subdrawing of G

Consider plane supergraph H of G.

Consider G', at cutvertices reconnect H-edges to angle vertices.

 \Rightarrow resulting graph H' is plane supergraph of G'

Corollary

SEFE Embedding with G conntected + induced admits (0, 1)-drawing.

Theorem

Every connected planar graph has an induced 1-universal drawing.

Proof: add angle vertices at all angles of cutvertices of G

resulting graph G' is biconnected

 \Rightarrow has induced 0-universal drawing take subdrawing of G

Consider plane supergraph H of G.

Consider G', at cutvertices reconnect *H*-edges to angle vertices.

 \Rightarrow resulting graph H' is plane supergraph of G'

Corollary

SEFE Embedding with G conntected + induced admits (0, 1)-drawing.

Corollary

Every connected planar graph has a 3-universal drawing. SEFE Embedding with *G* connected admits (0, 3)-drawing.

		induced	general
inectivity of G	2-connected	(0, 0)-drawing	(0, 1)-drawing
	connected	(0, 1)-drawing	(0, 3)-drawing
	components are 2-connected	(0, 3)-drawing	(0, 7)-drawing
COL	arbitrary	(0, 4)-drawing	(0,9)-drawing

Universal Drawings of General Graphs

There are disconnected graphs that do not admit a O(1)-universal drawing. In fact: (induced) *k*-universal drawings of *G* requires $k \in \Omega(|V(G)|)$ [Gordon '14]

Previous talk: Every drawing of G is (induced) O(|V(G)|)-universal. [Chan, Frati, Gutwenger, Lubiw, Mutzel, Schaefer]

Need another approach to handle general graphs.

Outline

- 1. SEFE Drawings when the common graph is (bi-)connected
- 2. The general case
- 3. Lower bounds

Theorem

SEFE Embedding with G induced + every component of G biconnected admits (0, 3)-drawing.

Draw from inside out. Assume:

- inner parts with all exclusive edges inside already drawn
- outer face star-shaped

Theorem

SEFE Embedding with G induced + every component of G biconnected admits (0, 3)-drawing.

Draw from inside out. Assume:

- inner parts with all exclusive edges inside already drawn
- outer face star-shaped

Theorem

SEFE Embedding with G induced + every component of G biconnected admits (0, 3)-drawing.

Draw from inside out. Assume:

inner parts with all exclusive edges inside already drawn

Theorem

SEFE Embedding with G induced + every component of G biconnected admits (0, 3)-drawing.

Draw from inside out. Assume:

inner parts with all exclusive edges inside already drawn

Connected Components are Biconnected

Theorem

SEFE Embedding with G induced + every component of G biconnected admits (0, 3)-drawing.

Draw from inside out. Assume:

inner parts with all exclusive edges inside already drawn

Remaining Cases

Theorem

SEFE Embedding with *G* induced + every component of *G* biconnected admits (0, 3)-drawing.

Treat cutvertices as before: \Rightarrow (0, 4)-drawing for common graph induced

Subdivide exclusive edges to make G induced: \Rightarrow (0, 9)-drawing

Outline

- 1. SEFE Drawings when the common graph is (bi-)connected
- 2. The general case
- 3. Lower bounds

Lower Bounds

Instances requiring at least one bend on an exclusive edge:

Lower Bounds

Instances requiring at least one bend on an exclusive edge:

Theorem

There is a family of SEFE Embeddings of *k* graphs with sunflower intersection such that any (0, *c*)-drawing has $c \in \Omega(\sqrt{2}^k/k)$.

Proof:

- based on lower bounds on crossing number
- edges that cross often need to bend often

Our Results

G induced subgraph of G_1 , G_2 ?

G		induced	general
connectivity of	2-connected	(0,0)-drawing	(0, 1)-drawing
	connected	(0, 1)-drawing	(0, 3)-drawing
	arbitrary	(0, 4)-drawing	(0,9)-drawing

- O(n)-Algorithm for SGE when common graph is biconnected, induced.
- SEFE Embedding of *k* graphs with sunflower intersection may require $c \in \Omega(\sqrt{2}^k/k)$ for a (0, *c*)-drawing

Our Results

G induced subgraph of G_1 , G_2 ?

C		induced	general
connectivity of	2-connected	(0,0)-drawing	(0, 1)-drawing
	connected	(0, 1)-drawing	(0, 3)-drawing
	arbitrary	(0, 4)-drawing	(0,9)-drawing

- O(n)-Algorithm for SGE when common graph is biconnected, induced.
- SEFE Embedding of *k* graphs with sunflower intersection may require $c \in \Omega(\sqrt{2}^k/k)$ for a (0, *c*)-drawing

Open questions:

- Better upper/lower bounds.
- Better trade-off: bends on exclusive edge ↔ bends on common edges?
- (0, c)-drawing for three graphs with sunflower intersection?