
Planar and Quasi Planar

Simultaneous Geometric

Embedding
Emilio Di Giacomo1, Walter Didimo1,

Giuseppe Liotta1, Henk Meijer2,
Stephen Wismath3
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Simultaneous Geometric Embedding (SGE)

• Let 〈G1 = (V,E1), G2 = (V,E2)〉 be a pair of planar
graphs with the same vertex set.

• A simultaneous geometric embedding (SGE) of 〈G1, G2〉
is a pair of drawings 〈Γ1,Γ2〉 such that:
– Γi is a planar straight-line drawing of Gi for i = 1, 2;
– each vertex v ∈ V is represented by the same point in

Γ1 and Γ2.
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SGE: Some results

G1 G2

Path Path 3 Braß et al., 2007

Caterpillar Caterpillar 3 Braß et al., 2007

Cycle Cycle 3 Braß et al., 2007

Tree Matching 3 Cabello et al., 2011

Outerpath Matching 3 Cabello et al., 2011

Planar Planar 7 Braß et al., 2007

Outerplanar Outerplanar 7 Braß et al., 2007

Tree Tree 7 Geyer et al., 2009

Planar Path 7 Braß et al., 2007

Planar Matching 7 Cabello et al., 2011

Tree Path 7 Angelini et al., 2012



An example to start

G1: path

G2: radius-2 star
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AEP, EAP and SGE

G1: EAP graph (path)

G2: AEP graph (radius-2 star)
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AEP, EAP and SGE

G1: EAP graph (path)

G2: AEP graph (radius-2 star)
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G1: EAP, G2: AEP ⇒ SGE



AEP graphs: who are they?

• Fowler and Kobourov studied the graphs that can be
simultaneously geometrically embedded with a path
using the previous technique
Fowler, Kobourov GD 2007

• They call these graphs ULP (Unlabeled Level Planar)
graph; they coincide with AEP graphs

• Fowler and Kobourov show that ULP=AEP graphs are
the union of the following classes:
– radius-2 stars
– extended degree-3 spider
– generalized caterpillars

• As a consequence, they obtain the following results:
– G1: path, G2: radius-2 star ⇒ SGE
– G1: path, G2: ext. deg.-3 spider ⇒ SGE
– G1: path, G2: gen. caterpillar ⇒ SGE



Our results (1/2)

• We show that G1: EAP, G2: AEP ⇒ SGE

• We show that EAP ⊂ AEP

• We characterize EAP graphs
– they coincide with a family that we call fat caterpillars
– as a consequence we obtain the following results

about SGE
∗ G1: fat caterpillar, G2: radius-2 star ⇒ SGE
∗ G1: fat caterpillar, G2: ext. deg.-3 spider ⇒ SGE
∗ G1: fat caterpillar, G2: gen. caterpillar ⇒ SGE

• We show that
G1: fat caterpillar and G2: tree of depth ≤ 2 ⇒ SGE
– this extends a result by Angelini et al.

Angelini, Geyer, Kaufmann, Neuwirth JGAA 2012



Our results (2/2)

• We extends our study “beyond planarity”:
– we define simultaneous geometric quasi-planar

embedding (SGQPE)
– We introduce AEQP graphs and EAQP graphs

• We prove that G1: EAQP, G2: AEQP ⇒ SGQPE

• We show that EAP ⊂ AEP ⊂ EAQP ⊂ AEQP

• We show that all trees are AEQP but not all of them are
EAQP

• We show that maximal outerpillar are EAQP
– as a consequence we have that
G1: tree and G2: maximal outerpillar ⇒ SGQPE
G1: tree and G2: path/cycle ⇒ SGQPE



Characterization of

EAP graphs
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EAP ⊆ AEP

Lemma 1 Let G ∈ EAP . Then G ∈ AEP .

G: EAP graph (path)
v1 v2 v3 v4 v5 v6 v7

We must find an x-leveling
that is OK with Y
Let’s rotate the plane

Let Y be a given y-leveling

Y is now an x-leveling

Since G is EAP, it has a
y-leveling that is OK with
any x-leveling
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Independent horizontal stabbing number

• The independent horizontal stabbing number of a s.l.
drawing Γ (denoted as ihs(Γ)) is the maximum number
of independent edges of Γ intersected by a horizontal line

• The independent horizontal stabbing number of a graph
G (denoted as ihs(G)) is the minimum independent
horizontal stabbing number over all straight-line
drawings of G

ihs(Γ) = 3



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇒)

G: EAP graph (path)
v1 v2 v3 v4 v5 v6 v7



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇒)

G: EAP graph (path)
v1 v2 v3 v4 v5 v6 v7

v1

v2

v3

v4

v5

v6

v7



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇒)

G: EAP graph (path)
v1 v2 v3 v4 v5 v6 v7

v1

v2

v3

v4

v5

v6

v7



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇒)

G: EAP graph (path)
v1 v2 v3 v4 v5 v6 v7

v1

v2

v3

v4

v5

v6

v7

ihs(Γ) = 1



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇒)

G: EAP graph (path)
v1 v2 v3 v4 v5 v6 v7

2

a

b

c

d



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇒)

G: EAP graph (path)
v1 v2 v3 v4 v5 v6 v7

2

a

b

c

d



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇒)

G: EAP graph (path)
v1 v2 v3 v4 v5 v6 v7

2

a

b

c

d
Impossible!!!



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇐)



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇐)

v1

v2

v3

v4

v5

v6

v7



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇐)

ihs(Γ) = 1

v1

v2

v3

v4

v5

v6

v7

1

1

1

1

1

1



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇐)

ihs(Γ) = 1

v1

v2

v3

v4

v5

v6

v7



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇐)

ihs(Γ) = 1

v1

v2

v3

v4
v5

v6

v7



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇐)

Γ



A technical lemma

Lemma 2 A graph G is an EAP graph if and only if
ihs(G) = 1.

(⇐)

2

Γ

Impossible!!!



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.

Γ



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.

Γ



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.

Γ



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.

Γ



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.

Γ

ihs(Γ) > 1



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.

Γ



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.

Γ



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.

Γ

ihs(Γ) > 1



Characterization of EAP graphs

Lemma 3 Let G be a radius-2 star that is not a generalized
caterpillar, then ihs(G) > 1.

Extended
degree-3 spidersAEP

graphs

Radius-2
stars

Fat
caterpillars

Generalized
caterpillars



Characterization of EAP graphs
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Characterization of EAP graphs

Lemma 4 Let G be an extended degree-3 spider that is not
a generalized caterpillar, then ihs(G) > 1.
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Characterization of EAP graphs

Lemma 4 Let G be an extended degree-3 spider that is not
a generalized caterpillar, then ihs(G) > 1.
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Characterization of EAP graphs

Lemma 5 Let G be a graph that contains a cycle of length
at least 4 then ihs(G) > 1.
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Characterization of EAP graphs

Lemma 6 Let G be a fat caterpillar. Then ihs(G) = 1.
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Characterization of EAP graphs

Lemma 6 Let G be a fat caterpillar. Then ihs(G) = 1.
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Characterization of EAP graphs

Theorem 1 A planar graph G is an EAP graph if and only
if it is a fat caterpillar.
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Simultaneous Geometric Quasi Planar Embedding

• Let 〈G1 = (V,E1), G2 = (V,E2)〉 be a pair of quasi
planar graphs with the same vertex set.

• A simultaneous geometric quasi planar embedding
(SGQPE) of 〈G1, G2〉 is a pair of drawings 〈Γ1,Γ2〉 such
that:
– Γi is a quasi planar straight-line drawing of Gi for
i = 1, 2;

– each vertex v ∈ V is represented by the same point in
Γ1 and Γ2.



Simultaneous Geometric Quasi Planar Embedding

• Let 〈G1 = (V,E1), G2 = (V,E2)〉 be a pair of quasi
planar graphs with the same vertex set.

• A simultaneous geometric quasi planar embedding
(SGQPE) of 〈G1, G2〉 is a pair of drawings 〈Γ1,Γ2〉 such
that:
– Γi is a quasi planar straight-line drawing of Gi for
i = 1, 2;

– each vertex v ∈ V is represented by the same point in
Γ1 and Γ2.

Recall:
• A drawing is quasi planar if it does not have three

mutually crossing edges
• A graph is quasi planar if it admits a quasi planar

drawing



EAQP and AEQP

EAQP graphs: There exists a y-leveling such that for any
x-leveling the resulting drawing is quasi planar

AEQP graphs: For any y-leveling there exists a x-leveling
such that the resulting drawing is quasi planar



Easy generalizations

Theorem 2 Let 〈G1, G2〉 be a pair of graphs such that
G1 ∈ AEQP and G2 ∈ EAQP . Then 〈G1, G2〉 admits a
SGQPE.

Lemma 7 Let G ∈ EAQP . Then G ∈ AEQP .

Lemma 8 A graph G is an EAQP graph if and only if
ihs(G) ≤ 2.



EAP, AEP, EAQP, AEQP: relationships

Theorem 3 EAP ⊂ AEP ⊂ EAQP ⊂ AEQP

Extended
degree-3 spiders

Radius-2
stars

Fat
caterpillars

Generalized
caterpillars

EAP

AEP

EAQP

AEQP



EAQP, AEQP: who are they?

Lemma 8 All trees are AEQP graphs
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EAQP, AEQP: who are they?

Lemma 8 All trees are AEQP graphs

This can be easily derived from a paper by Didimo et al.
Didimo, Kaufmann, Liotta, Okamoto, Spillner IPL 2012

They prove that for any y-leveling there exists an x-leveling
such that in the resulting drawing each crossing form an
angle of π

2 − ε (for any given ε > 0)

If ε is less than π
6 then there cannot be three mutually

crossing edges as otherwise there would be a triangle whose
angle sum up to more than π
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EAQP, AEQP: who are they?

Lemma 9 All maximal outerpillar are EAQP graphs
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ihs(G) ≤ 2



Open problems

• AEP have been characterized by Fowler and Kobourov
• EAP have been characterized in our paper

Problem 1: Characterize EAQP and AEQP graphs

• Our results imply that a tree and a path/cycle admit a
SGQP embedding (while they do not admit a SGE)

Problem 2: Does every pair of trees (or planar graphs)
admit a SGQPE?

Problem 3: Study simultaneous embeddability for other
“beyond planarity” models


