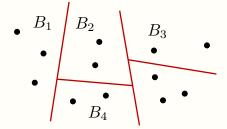

### Simultaneous Embeddability of Two Partitions

#### <u>Jan C. Athenstädt</u><sup>1</sup>, Tanja Hartmann<sup>2</sup> & Martin Nöllenburg<sup>2</sup>

<sup>1</sup>University of Konstanz <sup>2</sup>Karlsruhe Institute of Technology (KIT)






GD 2014 - September 24th, 2014



Partitions

### definition: partition of a finite universe U

- $\mathcal{P} = \{B_1, \ldots, B_n\}$  collection of subsets ("blocks") of U
- every  $u \in U$  contained in exactly one  $B \in \mathcal{P}$





Partitions

### definition: partition of a finite universe U

- $\mathcal{P} = \{B_1, \ldots, B_n\}$  collection of subsets ("blocks") of U
- every  $u \in U$  contained in exactly one  $B \in \mathcal{P}$

#### occurrence of partitions

- induced by parameter of a dataset
  - multiple independent parameters possible
- result of a clustering algorithm
  - different algorithms return different results



Partitions

### definition: partition of a finite universe U

- $\mathcal{P} = \{B_1, \ldots, B_n\}$  collection of subsets ("blocks") of U
- every  $u \in U$  contained in exactly one  $B \in \mathcal{P}$

#### occurrence of partitions

- induced by parameter of a dataset
  - multiple independent parameters possible
- result of a clustering algorithm
  - different algorithms return different results

#### How can we compare two partitions?





- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
  - does not show where the differences or similarities are





- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
  - does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
  - only for a single clustering / partition





- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
  - does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
  - only for a single clustering / partition
- clustered planarity and simultaneous embeddings of planar graphs [Feng et al. 1995, Bläsius et al. 2013]
  - focus on graph planarity, not set intersection



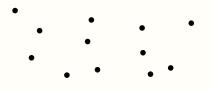
- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
  - does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
  - only for a single clustering / partition
- clustered planarity and simultaneous embeddings of planar graphs [Feng et al. 1995, Bläsius et al. 2013]
  - focus on graph planarity, not set intersection
- Venn- and Euler diagrams and hypergraph / set visualization [Chow 2007, Mäkinen 1990, Kaufmann et al. 2009]
  - the more general case, not restricted to pairs of partitions



**Related Work** 

- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
  - does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
  - only for a single clustering / partition
- clustered planarity and simultaneous embeddings of planar graphs [Feng et al. 1995, Bläsius et al. 2013]
  - focus on graph planarity, not set intersection
- Venn- and Euler diagrams and hypergraph / set visualization [Chow 2007, Mäkinen 1990, Kaufmann et al. 2009]
  - the more general case, not restricted to pairs of partitions

#### our contribution


classification of simultaneous embeddings of two partitions

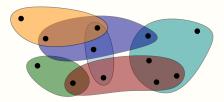


Embeddings

# definition: embedding of a collection of subsets of *U* embedding $\Gamma$ of $S \subseteq 2^U$ maps

• 
$$u \in U \to \Gamma(u) \in \mathbb{R}^2$$








Embeddings

# definition: embedding of a collection of subsets of U embedding $\Gamma$ of $S \subseteq 2^U$ maps

- $u \in U \to \Gamma(u) \in \mathbb{R}^2$
- $S \in S \to \Gamma(S) \subset \mathbb{R}^2$  such that
  - $\Gamma(S)$  is simple, bounded, and closed region
  - $\Gamma(u) \in \Gamma(S) \Leftrightarrow u \in S$
  - boundaries intersect in true crossing points

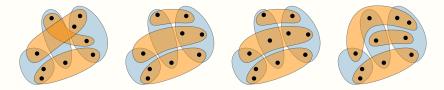






Embeddings

# definition: embedding of a collection of subsets of U embedding $\Gamma$ of $S \subseteq 2^U$ maps


- $u \in U \to \Gamma(u) \in \mathbb{R}^2$
- $S \in S \to \Gamma(S) \subset \mathbb{R}^2$  such that
  - $\Gamma(S)$  is simple, bounded, and closed region
  - $\Gamma(u) \in \Gamma(S) \Leftrightarrow u \in S$
  - boundaries intersect in true crossing points

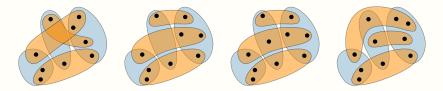
#### two partitions $\mathcal{P}_1$ and $\mathcal{P}_2$

▶ (simultaneous) embedding := embedding of  $P_1 \cup P_2$ 



Overview




#### examples of simultaneous embeddings of two partitions



Universität Konstanz

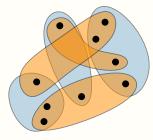


Overview

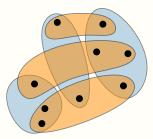


#### examples of simultaneous embeddings of two partitions

#### How to classify a "good" embedding?







Weak Embeddability

#### definition: weak embedding

#### no two block regions of the same partition intersect



non-weak embedding



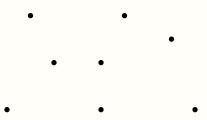
weak embedding





Weak Embeddability

theorem


Any two partitions on any point set have a weak embedding.

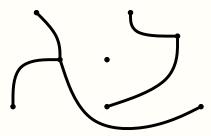


Weak Embeddability

#### theorem

Any two partitions on any point set have a weak embedding. sketch of proof



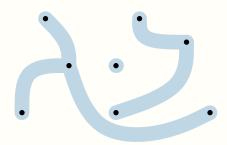





Weak Embeddability

#### theorem

Any two partitions on any point set have a weak embedding.



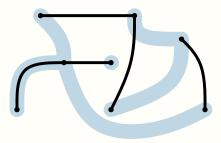



Weak Embeddability

#### theorem

Any two partitions on any point set have a weak embedding.





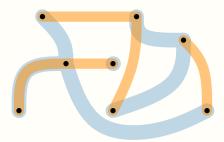



Weak Embeddability

#### theorem

Any two partitions on any point set have a weak embedding.





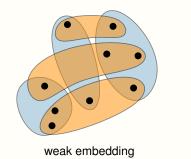


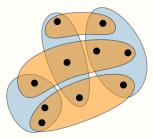

Weak Embeddability

#### theorem

Any two partitions on any point set have a weak embedding.






Strong Embeddability

#### definition: strong embedding

# weak embedding + each connected component of the intersection of two block regions contains at least one element





strong embedding





Strong Embeddability

#### definition: strong embedding

# weak embedding + each connected component of the intersection of two block regions contains at least one element

• NP-complete decision problem ( $\rightarrow$  later)





Strong Embeddability

#### definition: strong embedding

weak embedding + each connected component of the intersection of two block regions contains at least one element

- ► NP-complete decision problem (→ later)
- corresponds to vertex planarity for hypergraphs [Johnson & Pollak 1987]





Strong Embeddability

### definition: strong embedding

weak embedding + each connected component of the intersection of two block regions contains at least one element

- ► NP-complete decision problem (→ later)
- corresponds to vertex planarity for hypergraphs [Johnson & Pollak 1987]
  - ▶ only because  $(U, P_1 \cup P_2)$  is 2-regular hypergraph
  - ► equivalent to existence of *planar support* (→ later) [Kaufmann et al. 2009]



Strong Embeddability

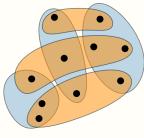
### definition: strong embedding

weak embedding + each connected component of the intersection of two block regions contains at least one element

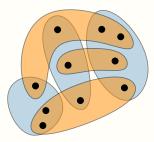
- ► NP-complete decision problem (→ later)
- corresponds to vertex planarity for hypergraphs [Johnson & Pollak 1987]
  - only because  $(U, \mathcal{P}_1 \cup \mathcal{P}_2)$  is 2-regular hypergraph
  - ► equivalent to existence of *planar support* (→ later) [Kaufmann et al. 2009]

theorem

 $\{\mathcal{P}_1, \mathcal{P}_2\}$  strongly embeddable  $\Leftrightarrow$  $(U, \mathcal{P}_1 \cup \mathcal{P}_2)$  has planar support







Full Embeddability

#### definition: full embedding

strong embedding + the boundaries of two block-regions have at most two points of intersection



strong embedding



full embedding





Full Embeddability

#### definition: full embedding

strong embedding + the boundaries of two block-regions have at most two points of intersection

- corresponds to Zykov planarity for hypergraphs [Zykov 1974]
  - equivalent to planarity of bipartite map





Full Embeddability

#### definition: full embedding

strong embedding + the boundaries of two block-regions have at most two points of intersection

- corresponds to Zykov planarity for hypergraphs [Zykov 1974]
  - equivalent to planarity of bipartite map
- can be decided in linear time [Walsh 1975]



Full Embeddability

#### definition: full embedding

strong embedding + the boundaries of two block-regions have at most two points of intersection

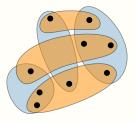
- corresponds to Zykov planarity for hypergraphs [Zykov 1974]
  - equivalent to planarity of bipartite map
- can be decided in linear time [Walsh 1975]

theorem

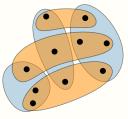
```
\{\mathcal{P}_1, \mathcal{P}_2\} fully embeddable

\Leftrightarrow

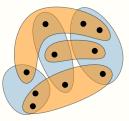
(U, \mathcal{P}_1 \cup \mathcal{P}_2) has planar bipartite map
```







Hierarchy of Embeddability




#### theorem The hierarchy is strict.



weak embedding



strong embedding



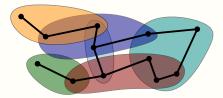
full embedding



NP-completeness of Strong Embeddability

definition: support of a hypergraph [Kaufmann et al. 2009]

- H = (U, S) is hypergraph with  $S \subseteq 2^U$
- support: graph G = (U, E) on U
- ► induced subgraph G[S] for every hyperedge S ∈ S connected






NP-completeness of Strong Embeddability

definition: support of a hypergraph [Kaufmann et al. 2009]

- H = (U, S) is hypergraph with  $S \subseteq 2^U$
- support: graph G = (U, E) on U
- ► induced subgraph G[S] for every hyperedge S ∈ S connected





NP-completeness of Strong Embeddability

definition: support of a hypergraph [Kaufmann et al. 2009]

- H = (U, S) is hypergraph with  $S \subseteq 2^U$
- support: graph G = (U, E) on U
- ► induced subgraph G[S] for every hyperedge S ∈ S connected

theorem (reminder)

 $\begin{array}{l} \{\mathcal{P}_1,\mathcal{P}_2\} \text{ strongly embeddable} \\ \Leftrightarrow \\ (U,\mathcal{P}_1\cup\mathcal{P}_2) \text{ has planar support} \end{array}$ 



NP-completeness of Strong Embeddability

theorem Deciding strong embeddability is NP-complete.





NP-completeness of Strong Embeddability

theorem Deciding strong embeddability is NP-complete.

⇒ implies NP-completeness of deciding vertex planarity for 2-regular hypergraphs





NP-completeness of Strong Embeddability

#### theorem

Deciding strong embeddability is NP-complete.

#### sketch of proof

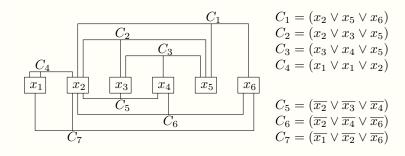
show that finding a planar support is NP-complete

- membership in NP
  - guess support graph
  - check planarity and support-property in polynomial time
- NP-hardness
  - reduction from PLANAR-MONOTONE-3-SAT
  - inspired by more general proof from [Buchin et al. 2010]

Universität Konstanz

#### Complexity results

NP-completeness of Strong Embeddability

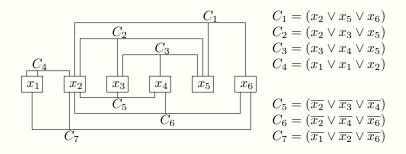

definition: PLANAR-MONOTONE-3-SAT 3-SAT formula with planar monotone rectilinear representation (MRR)





NP-completeness of Strong Embeddability

#### definition: PLANAR-MONOTONE-3-SAT 3-SAT formula with planar monotone rectilinear representation (MRR)








NP-completeness of Strong Embeddability

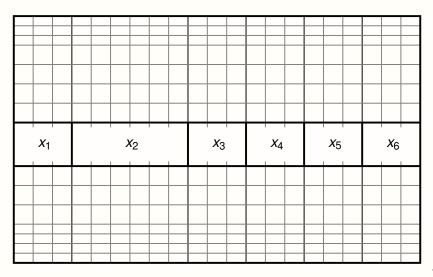
#### definition: PLANAR-MONOTONE-3-SAT 3-SAT formula with planar monotone rectilinear representation (MRR)



NP-complete problem [de Berg & Khosravi 2010]





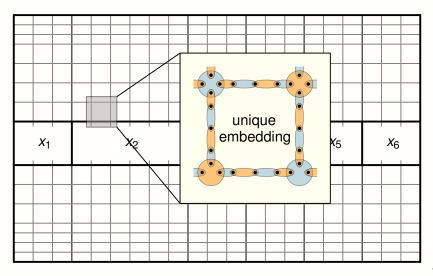

NP-completeness of Strong Embeddability

given an MRR  $\Phi$ 

- fix clusters on a grid to follow structure of Φ
- inspired by the proof in [Chaplick et al. 2012]



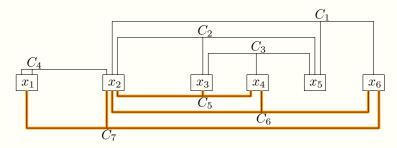
NP-completeness of Strong Embeddability

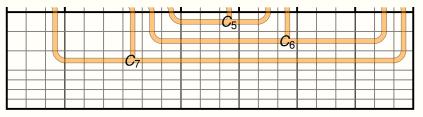



μ,

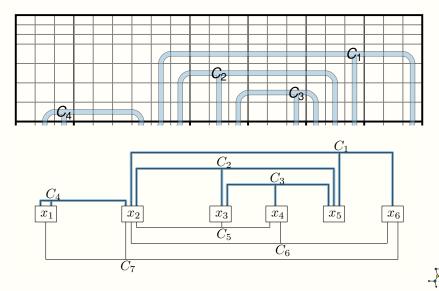


### Complexity results


NP-completeness of Strong Embeddability

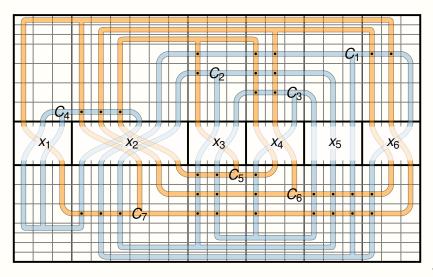



ДД.



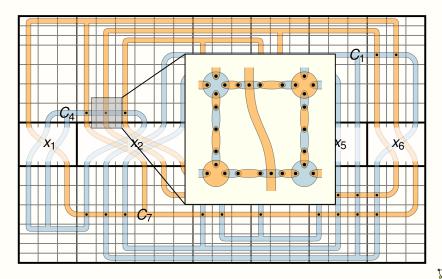

### Complexity results





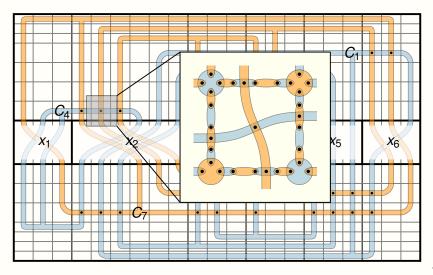





NP-completeness of Strong Embeddability

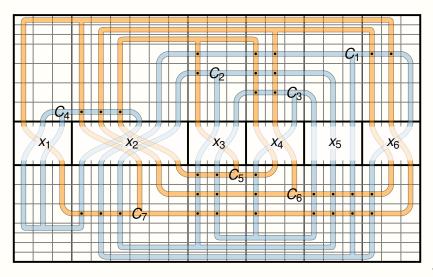



T.





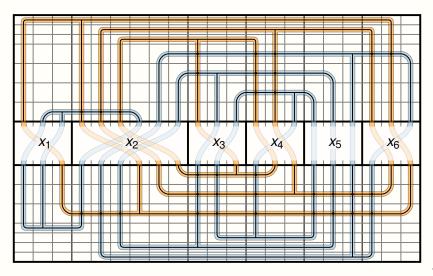



NP-completeness of Strong Embeddability



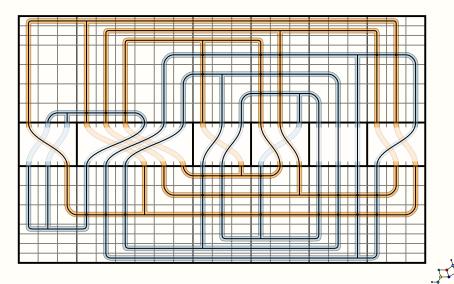
TT.




NP-completeness of Strong Embeddability

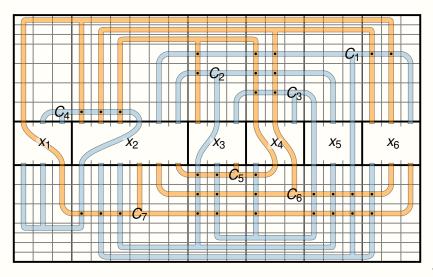


T.




NP-completeness of Strong Embeddability




H

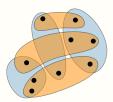




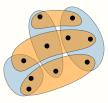


NP-completeness of Strong Embeddability

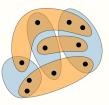



TT.

#### Thank you! Results and Extensions




#### future work


- more than two partitions
- algorithms for visually appealing embeddings
- respect an underlying graph structure



weak embedding ⇒ exists always



strong embedding  $\Rightarrow$  NP-complete



Universität Konstanz

full embedding  $\Rightarrow$  check in lin. time