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How can we compare two partitions?
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» only for a single clustering / partition

» clustered planarity and simultaneous embeddings of planar
graphs [Feng et al. 1995, Blasius et al. 2013]

» focus on graph planarity, not set intersection

» Venn- and Euler diagrams and hypergraph / set visualization
[Chow 2007, Makinen 1990, Kaufmann et al. 2009]

» the more general case, not restricted to pairs of partitions

our contribution
» classification of simultaneous embeddings of two partitions *Fg
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Embeddings

definition: embedding of a collection of subsets of U
embedding T of S C 2Y maps
» uc U—T(u) eR?
» Sc S —I(S) c R? such that
» [(S) is simple, bounded, and closed region
» (W) el(S)<ue s
» boundaries intersect in true crossing points
two partitions P and P»
» (simultaneous) embedding := embedding of Py U P»
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Overview
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examples of simultaneous embeddings of two partitions

How to classify a "good" embedding?
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Weak Embeddability

definition: weak embedding
no two block regions of the same patrtition intersect

non-weak embedding weak embedding

S
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definition: strong embedding

weak embedding + each connected component of the
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theorem
{P1, P>} strongly embeddable

&
(U, Py UP2) has planar support

S
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Embeddability Classes

Full Embeddability

definition: full embedding

strong embedding + the boundaries of two block-regions have
at most two points of intersection

» corresponds to Zykov planarity for hypergraphs
[Zykov 1974]
» equivalent to planarity of bipartite map
» can be decided in linear time [Walsh 1975]

theorem

{P1, P2} fully embeddable
&
(U, Py UPy) has planar bipartite map




Embeddability Classes

Hierarchy of Embeddability

weakly embeddable

theorem
The hierarchy is strict.

Lk okl

weak embedding strong embedding full embedding
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definition: support of a hypergraph [Kaufmann et al. 2009]

» H=(U,S) is hypergraph with S C 2Y

» support: graph G = (U, E) on U

» induced subgraph G|[S] for every hyperedge S € S
connected

theorem (reminder)
{P1, P>} strongly embeddable

&
(U, Py UP») has planar support
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NP-completeness of Strong Embeddability

theorem
Deciding strong embeddability is NP-complete.
sketch of proof
show that finding a planar support is NP-complete
» membership in NP
» guess support graph
» check planarity and support-property in polynomial time
» NP-hardness

» reduction from PLANAR-MONOTONE-3-SAT
» inspired by more general proof from [Buchin et al. 2010]




Complexity results
NP-completeness of Strong Embeddability

definition: PLANAR-MONOTONE-3-SAT
3-SAT formula with planar monotone
rectilinear representation (MRR)




Complexity results
NP-completeness of Strong Embeddability

definition: PLANAR-MONOTONE-3-SAT
3-SAT formula with planar monotone
rectilinear representation (MRR)

Cl = (1‘2 \/I5 \/1‘6)
02 = (1‘2 \/Ig \/1‘5)
03 = (1‘3 V x4 \/1‘5)
04 = (1‘1 \/xl \/1‘2)

Cs = (T2 VT3V T3)
Ce = (T2 V71 V Tg)
Cr = (T1V T3V Tg)




Complexity results
NP-completeness of Strong Embeddability
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3-SAT formula with planar monotone
rectilinear representation (MRR)

Cl = (1‘2 \/I5 \/1‘6)
02 = (1‘2 \/Ig \/1‘5)
03 = (1‘3 V x4 \/1‘5)
04 = (1‘1 \/xl \/1‘2)

Cs = (T2 VT3V T3)
Ce = (T2 V71 V Tg)
Cr = (T1V T3V Tg)

» NP-complete problem [de Berg & Khosravi 2010]

S



Complexity results
NP-completeness of Strong Embeddability

given an MRR ¢

» fix clusters on a grid to follow structure of ®
» inspired by the proof in [Chaplick et al. 2012]
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Thank you!

Results and Extensions

future work
» more than two partitions
» algorithms for visually
appealing embeddings
» respect an underlying
graph structure

weakly embeddable

strongly embeddable

fully embeddable

weak embedding strong embedding full  embedding
= exists always = NP-complete = checkin lin. time

S



	Introduction
	Partitions
	Related Work
	Embeddings

	The Hierarchy of Embeddability
	Weak Embeddability
	Strong Embeddability
	Full Embeddability

	Complexity results
	NP-completeness of Strong Embeddability


