Simultaneous Embeddability of Two Partitions

Jan C. Athenstädt ${ }^{1}$, Tanja Hartmann² \& Martin Nöllenburg ${ }^{2}$

${ }^{1}$ University of Konstanz
${ }^{2}$ Karlsruhe Institute of Technology (KIT)

GD 2014 - September 24th, 2014

Introduction

Partitions

definition: partition of a finite universe U

- $\mathcal{P}=\left\{B_{1}, \ldots, B_{n}\right\}$ collection of subsets ("blocks") of U
- every $u \in U$ contained in exactly one $B \in \mathcal{P}$

Introduction

Partitions

definition: partition of a finite universe U

- $\mathcal{P}=\left\{B_{1}, \ldots, B_{n}\right\}$ collection of subsets ("blocks") of U
- every $u \in U$ contained in exactly one $B \in \mathcal{P}$

occurrence of partitions

- induced by parameter of a dataset
- multiple independent parameters possible
- result of a clustering algorithm
- different algorithms return different results

Introduction

Partitions

definition: partition of a finite universe U

- $\mathcal{P}=\left\{B_{1}, \ldots, B_{n}\right\}$ collection of subsets ("blocks") of U
- every $u \in U$ contained in exactly one $B \in \mathcal{P}$

occurrence of partitions

- induced by parameter of a dataset
- multiple independent parameters possible
- result of a clustering algorithm
- different algorithms return different results

How can we compare two partitions?

Introduction

Related Work

- numeric measures of similarity for two partitions [Wagner \& Wagner 2007]
- does not show where the differences or similarities are

Introduction

Related Work

- numeric measures of similarity for two partitions [Wagner \& Wagner 2007]
- does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
- only for a single clustering / partition

Introduction

Related Work

- numeric measures of similarity for two partitions [Wagner \& Wagner 2007]
- does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
- only for a single clustering / partition
- clustered planarity and simultaneous embeddings of planar graphs [Feng et al. 1995, Bläsius et al. 2013]
- focus on graph planarity, not set intersection

Introduction

Related Work

- numeric measures of similarity for two partitions [Wagner \& Wagner 2007]
- does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
- only for a single clustering / partition
- clustered planarity and simultaneous embeddings of planar graphs [Feng et al. 1995, Bläsius et al. 2013]
- focus on graph planarity, not set intersection
- Venn- and Euler diagrams and hypergraph / set visualization [Chow 2007, Mäkinen 1990, Kaufmann et al. 2009]
- the more general case, not restricted to pairs of partitions

Introduction

Related Work

- numeric measures of similarity for two partitions [Wagner \& Wagner 2007]
- does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
- only for a single clustering / partition
- clustered planarity and simultaneous embeddings of planar graphs [Feng et al. 1995, Bläsius et al. 2013]
- focus on graph planarity, not set intersection
- Venn- and Euler diagrams and hypergraph / set visualization [Chow 2007, Mäkinen 1990, Kaufmann et al. 2009]
- the more general case, not restricted to pairs of partitions

our contribution

- classification of simultaneous embeddings of two partitions

Introduction

Embeddings

definition: embedding of a collection of subsets of U embedding Γ of $\mathcal{S} \subseteq 2^{U}$ maps

- $u \in U \rightarrow \Gamma(u) \in \mathbb{R}^{2}$

Introduction

Embeddings

definition: embedding of a collection of subsets of U embedding Γ of $\mathcal{S} \subseteq 2^{U}$ maps

- $u \in U \rightarrow \Gamma(u) \in \mathbb{R}^{2}$
- $S \in \mathcal{S} \rightarrow \Gamma(S) \subset \mathbb{R}^{2}$ such that
- $\Gamma(S)$ is simple, bounded, and closed region
- $\Gamma(u) \in \Gamma(S) \Leftrightarrow u \in S$
- boundaries intersect in true crossing points

Introduction

Embeddings

definition: embedding of a collection of subsets of U embedding Γ of $\mathcal{S} \subseteq 2^{U}$ maps

- $u \in U \rightarrow \Gamma(u) \in \mathbb{R}^{2}$
- $S \in \mathcal{S} \rightarrow \Gamma(S) \subset \mathbb{R}^{2}$ such that
- $\Gamma(S)$ is simple, bounded, and closed region
- $\Gamma(u) \in \Gamma(S) \Leftrightarrow u \in S$
- boundaries intersect in true crossing points
two partitions \mathcal{P}_{1} and \mathcal{P}_{2}
- (simultaneous) embedding := embedding of $\mathcal{P}_{1} \cup \mathcal{P}_{2}$

Embeddability Classes

Overview

examples of simultaneous embeddings of two partitions

Embeddability Classes

Overview

examples of simultaneous embeddings of two partitions

How to classify a "good" embedding?

Embeddability Classes

Weak Embeddability
definition: weak embedding no two block regions of the same partition intersect

non-weak embedding

weak embedding

Embeddability Classes

Weak Embeddability

theorem
Any two partitions on any point set have a weak embedding.

Embeddability Classes

Weak Embeddability
theorem
Any two partitions on any point set have a weak embedding. sketch of proof

Embeddability Classes

Weak Embeddability
theorem
Any two partitions on any point set have a weak embedding. sketch of proof

Embeddability Classes

Weak Embeddability

theorem
Any two partitions on any point set have a weak embedding. sketch of proof

Embeddability Classes

Weak Embeddability
theorem
Any two partitions on any point set have a weak embedding. sketch of proof

Embeddability Classes

Weak Embeddability

theorem
Any two partitions on any point set have a weak embedding. sketch of proof

Embeddability Classes

Strong Embeddability

definition: strong embedding
weak embedding + each connected component of the intersection of two block regions contains at least one element

weak embedding

strong embedding

Embeddability Classes

Strong Embeddability

definition: strong embedding
weak embedding + each connected component of the intersection of two block regions contains at least one element

- NP-complete decision problem (\rightarrow later)

Embeddability Classes

Strong Embeddability

definition: strong embedding
weak embedding + each connected component of the intersection of two block regions contains at least one element

- NP-complete decision problem (\rightarrow later)
- corresponds to vertex planarity for hypergraphs [Johnson \& Pollak 1987]

Embeddability Classes

Strong Embeddability

definition: strong embedding
weak embedding + each connected component of the intersection of two block regions contains at least one element

- NP-complete decision problem (\rightarrow later)
- corresponds to vertex planarity for hypergraphs [Johnson \& Pollak 1987]
- only because $\left(U, \mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ is 2-regular hypergraph
- equivalent to existence of planar support (\rightarrow later) [Kaufmann et al. 2009]

Embeddability Classes

Strong Embeddability

definition: strong embedding
weak embedding + each connected component of the intersection of two block regions contains at least one element

- NP-complete decision problem (\rightarrow later)
- corresponds to vertex planarity for hypergraphs [Johnson \& Pollak 1987]
- only because $\left(U, \mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ is 2-regular hypergraph
- equivalent to existence of planar support (\rightarrow later) [Kaufmann et al. 2009]
theorem
$\left\{\mathcal{P}_{1}, \mathcal{P}_{2}\right\}$ strongly embeddable
\Leftrightarrow
$\left(U, \mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ has planar support

Embeddability Classes

Full Embeddability

definition: full embedding
strong embedding + the boundaries of two block-regions have at most two points of intersection

strong embedding

full embedding

Embeddability Classes

Full Embeddability

definition: full embedding
strong embedding + the boundaries of two block-regions have at most two points of intersection

- corresponds to Zykov planarity for hypergraphs [Zykov 1974]
- equivalent to planarity of bipartite map

Embeddability Classes

Full Embeddability

definition: full embedding
strong embedding + the boundaries of two block-regions have at most two points of intersection

- corresponds to Zykov planarity for hypergraphs [Zykov 1974]
- equivalent to planarity of bipartite map
- can be decided in linear time [Walsh 1975]

Embeddability Classes

Full Embeddability

definition: full embedding
strong embedding + the boundaries of two block-regions have at most two points of intersection

- corresponds to Zykov planarity for hypergraphs [Zykov 1974]
- equivalent to planarity of bipartite map
- can be decided in linear time [Walsh 1975]
theorem
$\left\{\mathcal{P}_{1}, \mathcal{P}_{2}\right\}$ fully embeddable
\Leftrightarrow
$\left(U, \mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ has planar bipartite map

Embeddability Classes

Hierarchy of Embeddability

theorem
 The hierarchy is strict.

weak embedding

strong embedding

full embedding

Complexity results

NP-completeness of Strong Embeddability
definition: support of a hypergraph [Kaufmann et al. 2009]

- $H=(U, \mathcal{S})$ is hypergraph with $\mathcal{S} \subseteq 2^{U}$
- support: graph $G=(U, E)$ on U
- induced subgraph $G[S]$ for every hyperedge $S \in \mathcal{S}$ connected

Complexity results

NP-completeness of Strong Embeddability
definition: support of a hypergraph [Kaufmann et al. 2009]

- $H=(U, \mathcal{S})$ is hypergraph with $\mathcal{S} \subseteq 2^{U}$
- support: graph $G=(U, E)$ on U
- induced subgraph $G[S]$ for every hyperedge $S \in \mathcal{S}$ connected

Complexity results

NP-completeness of Strong Embeddability
definition: support of a hypergraph [Kaufmann et al. 2009]

- $H=(U, \mathcal{S})$ is hypergraph with $\mathcal{S} \subseteq 2^{U}$
- support: graph $G=(U, E)$ on U
- induced subgraph $G[S]$ for every hyperedge $S \in \mathcal{S}$ connected
theorem (reminder)
$\left\{\mathcal{P}_{1}, \mathcal{P}_{2}\right\}$ strongly embeddable \Leftrightarrow
$\left(U, \mathcal{P}_{1} \cup \mathcal{P}_{2}\right)$ has planar support

Complexity results

NP-completeness of Strong Embeddability
theorem
Deciding strong embeddability is NP-complete.

Complexity results

NP-completeness of Strong Embeddability
theorem
Deciding strong embeddability is NP-complete.
\Rightarrow implies NP-completeness of deciding vertex planarity for 2 -regular hypergraphs

Complexity results
 NP-completeness of Strong Embeddability

theorem
Deciding strong embeddability is NP-complete.
sketch of proof
show that finding a planar support is NP-complete

- membership in NP
- guess support graph
- check planarity and support-property in polynomial time
- NP-hardness
- reduction from Planar-Monotone-3-Sat
- inspired by more general proof from [Buchin et al. 2010]

Complexity results

NP-completeness of Strong Embeddability
definition: Planar-Monotone-3-Sat
3-SAT formula with planar monotone rectilinear representation (MRR)

Complexity results

NP-completeness of Strong Embeddability
definition: Planar-Monotone-3-Sat
3-Sat formula with planar monotone rectilinear representation (MRR)

$$
\begin{aligned}
& C_{1}=\left(x_{2} \vee x_{5} \vee x_{6}\right) \\
& C_{2}=\left(x_{2} \vee x_{3} \vee x_{5}\right) \\
& C_{3}=\left(x_{3} \vee x_{4} \vee x_{5}\right) \\
& C_{4}=\left(x_{1} \vee x_{1} \vee x_{2}\right) \\
& \\
& C_{5}=\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \\
& C_{6}=\left(\overline{x_{2}} \vee \overline{x_{4}} \vee \overline{x_{6}}\right) \\
& C_{7}=\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{6}}\right)
\end{aligned}
$$

Complexity results

NP-completeness of Strong Embeddability
definition: Planar-Monotone-3-Sat
3-Sat formula with planar monotone rectilinear representation (MRR)

$$
\begin{aligned}
& C_{1}=\left(x_{2} \vee x_{5} \vee x_{6}\right) \\
& C_{2}=\left(x_{2} \vee x_{3} \vee x_{5}\right) \\
& C_{3}=\left(x_{3} \vee x_{4} \vee x_{5}\right) \\
& C_{4}=\left(x_{1} \vee x_{1} \vee x_{2}\right) \\
& \\
& C_{5}=\left(\overline{x_{2}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \\
& C_{6}=\left(\overline{x_{2}} \vee \overline{x_{4}} \vee \overline{x_{6}}\right) \\
& C_{7}=\left(\overline{x_{1}} \vee \overline{x_{2}} \vee \overline{x_{6}}\right)
\end{aligned}
$$

- NP-complete problem [de Berg \& Khosravi 2010]

Complexity results
NP-completeness of Strong Embeddability

given an MRR Φ

- fix clusters on a grid to follow structure of Φ
- inspired by the proof in [Chaplick et al. 2012]

Complexity results

NP-completeness of Strong Embeddability

Thank you!

Results and Extensions

future work

- more than two partitions
- algorithms for visually appealing embeddings
- respect an underlying graph structure

weak embedding
\Rightarrow exists always

strong embedding
\Rightarrow NP-complete

full embedding
\Rightarrow check in lin. time

