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occurrence of partitions
I induced by parameter of a dataset

I multiple independent parameters possible
I result of a clustering algorithm

I different algorithms return different results

How can we compare two partitions?
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Related Work

I numeric measures of similarity for two partitions
[Wagner & Wagner 2007]

I does not show where the differences or similarities are

I visualization of clusterings by color and spatial proximity
[Buja et al. 2008, Kohonen 2001]

I only for a single clustering / partition
I clustered planarity and simultaneous embeddings of planar

graphs [Feng et al. 1995, Bläsius et al. 2013]
I focus on graph planarity, not set intersection

I Venn- and Euler diagrams and hypergraph / set visualization
[Chow 2007, Mäkinen 1990, Kaufmann et al. 2009]

I the more general case, not restricted to pairs of partitions

our contribution
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Introduction
Embeddings

definition: embedding of a collection of subsets of U
embedding Γ of S ⊆ 2U maps

I u ∈ U → Γ(u) ∈ R2

I S ∈ S → Γ(S) ⊂ R2 such that
I Γ(S) is simple, bounded, and closed region
I Γ(u) ∈ Γ(S)⇔ u ∈ S
I boundaries intersect in true crossing points

two partitions P1 and P2

I (simultaneous) embedding := embedding of P1 ∪ P2
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Embeddability Classes
Weak Embeddability

definition: weak embedding
no two block regions of the same partition intersect

non-weak embedding weak embedding
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theorem
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Embeddability Classes
Full Embeddability

definition: full embedding
strong embedding + the boundaries of two block-regions have
at most two points of intersection

I corresponds to Zykov planarity for hypergraphs
[Zykov 1974]

I equivalent to planarity of bipartite map
I can be decided in linear time [Walsh 1975]

theorem

{P1,P2} fully embeddable
⇔

(U,P1 ∪ P2) has planar bipartite map



Embeddability Classes
Hierarchy of Embeddability

fully embeddable

strongly embeddable

weakly embeddable

theorem
The hierarchy is strict.

weak embedding strong embedding full embedding
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definition: support of a hypergraph [Kaufmann et al. 2009]

I H = (U,S) is hypergraph with S ⊆ 2U

I support: graph G = (U,E) on U
I induced subgraph G [S] for every hyperedge S ∈ S

connected

theorem (reminder)

{P1,P2} strongly embeddable
⇔

(U,P1 ∪ P2) has planar support
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Complexity results
NP-completeness of Strong Embeddability

theorem
Deciding strong embeddability is NP-complete.
sketch of proof
show that finding a planar support is NP-complete

I membership in NP
I guess support graph
I check planarity and support-property in polynomial time

I NP-hardness
I reduction from PLANAR-MONOTONE-3-SAT
I inspired by more general proof from [Buchin et al. 2010]
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NP-completeness of Strong Embeddability

given an MRR Φ

I fix clusters on a grid to follow structure of Φ
I inspired by the proof in [Chaplick et al. 2012]



Complexity results
NP-completeness of Strong Embeddability

x3 x4 x5 x6x1 x2



Complexity results
NP-completeness of Strong Embeddability

x3 x4 x5 x6x1 x2

unique
embedding



Complexity results
NP-completeness of Strong Embeddability

C4

C1

C2

C3

C7

C6

C5

x3 x4 x5 x6x1 x2

C5

C6

C7

C4

C3

C2

C1

x1 x2 x3 x4 x5 x6



Complexity results
NP-completeness of Strong Embeddability

C4

C1

C2

C3

C7

C6

C5

x3 x4 x5 x6x1 x2

C5

C6

C7

C4

C3

C2

C1

x1 x2 x3 x4 x5 x6



Complexity results
NP-completeness of Strong Embeddability

C4

C1

C2

C3

C7

C6

C5

x3 x4 x5 x6x1 x2



Complexity results
NP-completeness of Strong Embeddability

C4

C1

C2

C3

C7

C6

C5

x3 x4 x5 x6x1 x2



Complexity results
NP-completeness of Strong Embeddability

C4

C1

C2

C3

C7

C6

C5

x3 x4 x5 x6x1 x2



Complexity results
NP-completeness of Strong Embeddability

C4

C1

C2

C3

C7

C6

C5

x3 x4 x5 x6x1 x2



Complexity results
NP-completeness of Strong Embeddability

x3 x4 x5 x6x1 x2



Complexity results
NP-completeness of Strong Embeddability



Complexity results
NP-completeness of Strong Embeddability

C4

C1

C2

C3

C7

C6

C5

x3 x4 x5 x6x1 x2



Thank you!
Results and Extensions

fully embeddable

strongly embeddable

weakly embeddable

future work
I more than two partitions
I algorithms for visually

appealing embeddings
I respect an underlying

graph structure

weak embedding
⇒ exists always

strong embedding
⇒ NP-complete

full embedding
⇒ check in lin. time
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