Simultaneous Embeddability of Two Partitions

<u>Jan C. Athenstädt</u>¹, Tanja Hartmann² & Martin Nöllenburg²

¹University of Konstanz ²Karlsruhe Institute of Technology (KIT)

GD 2014 - September 24th, 2014

Partitions

definition: partition of a finite universe U

- $\mathcal{P} = \{B_1, \ldots, B_n\}$ collection of subsets ("blocks") of U
- every $u \in U$ contained in exactly one $B \in \mathcal{P}$

Partitions

definition: partition of a finite universe U

- $\mathcal{P} = \{B_1, \ldots, B_n\}$ collection of subsets ("blocks") of U
- every $u \in U$ contained in exactly one $B \in \mathcal{P}$

occurrence of partitions

- induced by parameter of a dataset
 - multiple independent parameters possible
- result of a clustering algorithm
 - different algorithms return different results

Partitions

definition: partition of a finite universe U

- $\mathcal{P} = \{B_1, \ldots, B_n\}$ collection of subsets ("blocks") of U
- every $u \in U$ contained in exactly one $B \in \mathcal{P}$

occurrence of partitions

- induced by parameter of a dataset
 - multiple independent parameters possible
- result of a clustering algorithm
 - different algorithms return different results

How can we compare two partitions?

- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
 - does not show where the differences or similarities are

- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
 - does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
 - only for a single clustering / partition

- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
 - does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
 - only for a single clustering / partition
- clustered planarity and simultaneous embeddings of planar graphs [Feng et al. 1995, Bläsius et al. 2013]
 - focus on graph planarity, not set intersection

- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
 - does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
 - only for a single clustering / partition
- clustered planarity and simultaneous embeddings of planar graphs [Feng et al. 1995, Bläsius et al. 2013]
 - focus on graph planarity, not set intersection
- Venn- and Euler diagrams and hypergraph / set visualization [Chow 2007, Mäkinen 1990, Kaufmann et al. 2009]
 - the more general case, not restricted to pairs of partitions

Related Work

- numeric measures of similarity for two partitions [Wagner & Wagner 2007]
 - does not show where the differences or similarities are
- visualization of clusterings by color and spatial proximity [Buja et al. 2008, Kohonen 2001]
 - only for a single clustering / partition
- clustered planarity and simultaneous embeddings of planar graphs [Feng et al. 1995, Bläsius et al. 2013]
 - focus on graph planarity, not set intersection
- Venn- and Euler diagrams and hypergraph / set visualization [Chow 2007, Mäkinen 1990, Kaufmann et al. 2009]
 - the more general case, not restricted to pairs of partitions

our contribution

classification of simultaneous embeddings of two partitions

Embeddings

definition: embedding of a collection of subsets of *U* embedding Γ of $S \subseteq 2^U$ maps

•
$$u \in U \to \Gamma(u) \in \mathbb{R}^2$$

Embeddings

definition: embedding of a collection of subsets of U embedding Γ of $S \subseteq 2^U$ maps

- $u \in U \to \Gamma(u) \in \mathbb{R}^2$
- $S \in S \to \Gamma(S) \subset \mathbb{R}^2$ such that
 - $\Gamma(S)$ is simple, bounded, and closed region
 - $\Gamma(u) \in \Gamma(S) \Leftrightarrow u \in S$
 - boundaries intersect in true crossing points

Embeddings

definition: embedding of a collection of subsets of U embedding Γ of $S \subseteq 2^U$ maps

- $u \in U \to \Gamma(u) \in \mathbb{R}^2$
- $S \in S \to \Gamma(S) \subset \mathbb{R}^2$ such that
 - $\Gamma(S)$ is simple, bounded, and closed region
 - $\Gamma(u) \in \Gamma(S) \Leftrightarrow u \in S$
 - boundaries intersect in true crossing points

two partitions \mathcal{P}_1 and \mathcal{P}_2

▶ (simultaneous) embedding := embedding of $P_1 \cup P_2$

Overview

examples of simultaneous embeddings of two partitions

Universität Konstanz

Overview

examples of simultaneous embeddings of two partitions

How to classify a "good" embedding?

Weak Embeddability

definition: weak embedding

no two block regions of the same partition intersect

non-weak embedding

weak embedding

Weak Embeddability

theorem

Any two partitions on any point set have a weak embedding.

Weak Embeddability

theorem

Any two partitions on any point set have a weak embedding. sketch of proof

Weak Embeddability

theorem

Any two partitions on any point set have a weak embedding.

Weak Embeddability

theorem

Any two partitions on any point set have a weak embedding.

Weak Embeddability

theorem

Any two partitions on any point set have a weak embedding.

Weak Embeddability

theorem

Any two partitions on any point set have a weak embedding.

Strong Embeddability

definition: strong embedding

weak embedding + each connected component of the intersection of two block regions contains at least one element

strong embedding

Strong Embeddability

definition: strong embedding

weak embedding + each connected component of the intersection of two block regions contains at least one element

• NP-complete decision problem (\rightarrow later)

Strong Embeddability

definition: strong embedding

weak embedding + each connected component of the intersection of two block regions contains at least one element

- ► NP-complete decision problem (→ later)
- corresponds to vertex planarity for hypergraphs [Johnson & Pollak 1987]

Strong Embeddability

definition: strong embedding

weak embedding + each connected component of the intersection of two block regions contains at least one element

- ► NP-complete decision problem (→ later)
- corresponds to vertex planarity for hypergraphs [Johnson & Pollak 1987]
 - ▶ only because $(U, P_1 \cup P_2)$ is 2-regular hypergraph
 - ► equivalent to existence of *planar support* (→ later) [Kaufmann et al. 2009]

Strong Embeddability

definition: strong embedding

weak embedding + each connected component of the intersection of two block regions contains at least one element

- ► NP-complete decision problem (→ later)
- corresponds to vertex planarity for hypergraphs [Johnson & Pollak 1987]
 - only because $(U, \mathcal{P}_1 \cup \mathcal{P}_2)$ is 2-regular hypergraph
 - ► equivalent to existence of *planar support* (→ later) [Kaufmann et al. 2009]

theorem

 $\{\mathcal{P}_1, \mathcal{P}_2\}$ strongly embeddable \Leftrightarrow $(U, \mathcal{P}_1 \cup \mathcal{P}_2)$ has planar support

Full Embeddability

definition: full embedding

strong embedding + the boundaries of two block-regions have at most two points of intersection

strong embedding

full embedding

Full Embeddability

definition: full embedding

strong embedding + the boundaries of two block-regions have at most two points of intersection

- corresponds to Zykov planarity for hypergraphs [Zykov 1974]
 - equivalent to planarity of bipartite map

Full Embeddability

definition: full embedding

strong embedding + the boundaries of two block-regions have at most two points of intersection

- corresponds to Zykov planarity for hypergraphs [Zykov 1974]
 - equivalent to planarity of bipartite map
- can be decided in linear time [Walsh 1975]

Full Embeddability

definition: full embedding

strong embedding + the boundaries of two block-regions have at most two points of intersection

- corresponds to Zykov planarity for hypergraphs [Zykov 1974]
 - equivalent to planarity of bipartite map
- can be decided in linear time [Walsh 1975]

theorem

```
\{\mathcal{P}_1, \mathcal{P}_2\} fully embeddable

\Leftrightarrow

(U, \mathcal{P}_1 \cup \mathcal{P}_2) has planar bipartite map
```


Hierarchy of Embeddability

theorem The hierarchy is strict.

weak embedding

strong embedding

full embedding

NP-completeness of Strong Embeddability

definition: support of a hypergraph [Kaufmann et al. 2009]

- H = (U, S) is hypergraph with $S \subseteq 2^U$
- support: graph G = (U, E) on U
- ► induced subgraph G[S] for every hyperedge S ∈ S connected

NP-completeness of Strong Embeddability

definition: support of a hypergraph [Kaufmann et al. 2009]

- H = (U, S) is hypergraph with $S \subseteq 2^U$
- support: graph G = (U, E) on U
- ► induced subgraph G[S] for every hyperedge S ∈ S connected

NP-completeness of Strong Embeddability

definition: support of a hypergraph [Kaufmann et al. 2009]

- H = (U, S) is hypergraph with $S \subseteq 2^U$
- support: graph G = (U, E) on U
- ► induced subgraph G[S] for every hyperedge S ∈ S connected

theorem (reminder)

 $\begin{array}{l} \{\mathcal{P}_1,\mathcal{P}_2\} \text{ strongly embeddable} \\ \Leftrightarrow \\ (U,\mathcal{P}_1\cup\mathcal{P}_2) \text{ has planar support} \end{array}$

NP-completeness of Strong Embeddability

theorem Deciding strong embeddability is NP-complete.

NP-completeness of Strong Embeddability

theorem Deciding strong embeddability is NP-complete.

⇒ implies NP-completeness of deciding vertex planarity for 2-regular hypergraphs

NP-completeness of Strong Embeddability

theorem

Deciding strong embeddability is NP-complete.

sketch of proof

show that finding a planar support is NP-complete

- membership in NP
 - guess support graph
 - check planarity and support-property in polynomial time
- NP-hardness
 - reduction from PLANAR-MONOTONE-3-SAT
 - inspired by more general proof from [Buchin et al. 2010]

Universität Konstanz

Complexity results

NP-completeness of Strong Embeddability

definition: PLANAR-MONOTONE-3-SAT 3-SAT formula with planar monotone rectilinear representation (MRR)

NP-completeness of Strong Embeddability

definition: PLANAR-MONOTONE-3-SAT 3-SAT formula with planar monotone rectilinear representation (MRR)

NP-completeness of Strong Embeddability

definition: PLANAR-MONOTONE-3-SAT 3-SAT formula with planar monotone rectilinear representation (MRR)

NP-complete problem [de Berg & Khosravi 2010]

NP-completeness of Strong Embeddability

given an MRR Φ

- fix clusters on a grid to follow structure of Φ
- inspired by the proof in [Chaplick et al. 2012]

NP-completeness of Strong Embeddability

μ,

Complexity results

NP-completeness of Strong Embeddability

ДД.

Complexity results

NP-completeness of Strong Embeddability

T.

NP-completeness of Strong Embeddability

TT.

NP-completeness of Strong Embeddability

T.

NP-completeness of Strong Embeddability

H

NP-completeness of Strong Embeddability

TT.

Thank you! Results and Extensions

future work

- more than two partitions
- algorithms for visually appealing embeddings
- respect an underlying graph structure

weak embedding ⇒ exists always

strong embedding \Rightarrow NP-complete

Universität Konstanz

full embedding \Rightarrow check in lin. time