Balanced Circle Packings for Planar Graphs

Sergey Pupyrev

Md. Jawaherul Alam

Stephen G. Kobourov

University of Arizona

University of California, Irvine

Michael T. Goodrich

David Eppstein

Graph Drawing Würzburg – September 24, 2014

• Contact representation with circles

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

- Contact representation with circles
- Vertices are interior-disjoint circles
- Edges are contacts between circles

The University of Arizona

Md. Jawaherul Alam

- Contact representation with circles
- Vertices are interior-disjoint circles
- Edges are contacts between circles

 \surd Any planar graph has a circle-packing [Koebe, 1936]

🕂 The University of Arizona

Md. Jawaherul Alam

- Contact representation with circles
- Vertices are interior-disjoint circles
- Edges are contacts between circles

 $\checkmark\,$ Any planar graph has a circle-packing [Koebe, 1936]

 $\times\,$ Sizes of circles may vary exponentially

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Circle Packing: Variation in Sizes

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Circle Packing: Variation in Sizes

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Circle Packing: Variation in Sizes

Goal: Balanced Circle-Packing

Polynomial ratio between maximum and minimum diameter

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Related Work

Circle Packing:

- Any plane graph has a circle-packing [Koebe, 1936].
- Any 3-connected plane graph has a primal-dual circle packing [Brightwell and Scheinerman, 1993].

Md. Jawaherul Alam

Related Work

Circle Packing:

- Any plane graph has a circle-packing [Koebe, 1936].
- Any 3-connected plane graph has a primal-dual circle packing [Brightwell and Scheinerman, 1993].

Balanced Circle Packing:

 It is NP-complete to test whether a graph admits contact representation with unit circles [Breu and Kirkpatrick, 1998].

🕂 The University of Arizona

Md. Jawaherul Alam

Related Work

Circle Packing:

- Any plane graph has a circle-packing [Koebe, 1936].
- Any 3-connected plane graph has a primal-dual circle packing [Brightwell and Scheinerman, 1993].

Balanced Circle Packing:

 It is NP-complete to test whether a graph admits contact representation with unit circles [Breu and Kirkpatrick, 1998].

Disk Intersection Graphs:

 In a realization with integer radii, radius of 2^{2^{Θ(n)}} is sometimes necessary and always sufficient [McDiarmid and Müller, 2013].

The University of Arizona

Md. Jawaherul Alam

Balanced circle packing

- $\sqrt{\text{trees.}}$
- $\sqrt{}$ cactus graphs.
- $\sqrt{}$ outerpaths.

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Balanced circle packing

 $\sqrt{\text{trees.}}$

- $\sqrt{}$ cactus graphs.
- $\sqrt{}$ outerpaths.
- \checkmark bounded degree and $O(\log n)$ outerplanarity.

Md. Jawaherul Alam

Balanced circle packing

 $\sqrt{\text{trees.}}$

- $\sqrt{}$ cactus graphs.
- $\sqrt{}$ outerpaths.
- $\sqrt{}$ bounded degree and $O(\log n)$ outerplanarity.
- $\times\,$ bounded degree but linear outerplanarity.
- $\times\,$ bounded outerplanarity but linear degree.

Md. Jawaherul Alam

Balanced circle packing

 $\sqrt{\text{trees.}}$

- $\sqrt{}$ cactus graphs.
- $\sqrt{}$ outerpaths.
- $\sqrt{}$ bounded degree and $O(\log n)$ outerplanarity.
- $\times\,$ bounded degree but linear outerplanarity.
- $\times\,$ bounded outerplanarity but linear degree.
- \checkmark bounded tree-depth.

The University of Arizona

Md. Jawaherul Alam

Balanced circle packing

 $\sqrt{\text{trees.}}$

- $\sqrt{}$ cactus graphs.
- \checkmark outerpaths.
- $\sqrt{}$ bounded degree and $O(\log n)$ outerplanarity.
- $\times\,$ bounded degree but linear outerplanarity.
- $\times\,$ bounded outerplanarity but linear degree.
- $\sqrt{}$ bounded tree-depth.

THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

• Compute balanced square-contact representation

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

- Compute balanced square-contact representation
 - length is (roughly) proportional to the number of leaves in subtree

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

- Compute balanced square-contact representation
- Draw Inscribing circles inside the squares

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

- Compute balanced square-contact representation
- Draw Inscribing circles inside the squares
- Translate downwards

🕂 The University of Arizona

Md. Jawaherul Alam

- Compute balanced square-contact representation
- Draw Inscribing circles inside the squares
- Translate downwards

🕂 The University of Arizona

Md. Jawaherul Alam

Augmented Fan-Trees

Add a path between the children of every vertex

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Augmented Fan-Trees

Add a path between the children of every vertex

Claim:

Any subgraph of an augmented fan-tree has a balanced packing

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Packing for Subgraphs of Augmented Fan-Trees

- Follow the algorithm for balanced packing of the tree
- Modify the circles for the children of each vertex

🕂 The University of Arizona

Md. Jawaherul Alam

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Each biconnected component is a cycle or a single edge

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Each biconnected component is a cycle or a single edge

• Each cactus graph is a subgraph of an augmented fan-tree

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Each biconnected component is a cycle or a single edge

• Each cactus graph is a subgraph of an augmented fan-tree

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Each biconnected component is a cycle or a single edge

- Each cactus graph is a subgraph of an augmented fan-tree
- $\Rightarrow\,$ Each cactus graph admits a balanced packing

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Balanced Packing for Outerpaths

Outerplanar graph whose weak dual is a path

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Balanced Packing for Outerpaths

Outerplanar graph whose weak dual is a path

Draw Circles for spine vertices

THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Balanced Packing for Outerpaths

Outerplanar graph whose weak dual is a path

- Draw Circles for spine vertices
- Rotate to create space for other vertices

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Balanced circle packing

 $\sqrt{\text{trees.}}$

 $\sqrt{}$ cactus graphs.

 $\sqrt{}$ outerpaths.

 $\sqrt{}$ bounded degree and $O(\log n)$ outerplanarity.

 $\times\,$ bounded degree but linear outerplanarity.

 $\times\,$ bounded outerplanarity but linear degree.

 \checkmark bounded tree-depth.

K The University of Arizona

Md. Jawaherul Alam

Balanced circle packing

 $\sqrt{\text{trees.}}$

 $\sqrt{}$ cactus graphs.

 $\sqrt{}$ outerpaths.

 \checkmark bounded degree and $O(\log n)$ outerplanarity.

 $\times\,$ bounded degree but linear outerplanarity.

 $\times\,$ bounded outerplanarity but linear degree.

 \checkmark bounded tree-depth.

🕂 The University of Arizona

Md. Jawaherul Alam

Balanced Packing for Maximal Planar Graphs

[Malitz and Papakostas, 1994]

- G: maximal planar graph
- Δ : maximum vertex-degree in G

Md. Jawaherul Alam

Balanced Packing for Maximal Planar Graphs

[Malitz and Papakostas, 1994]

- G: maximal planar graph
- Δ : maximum vertex-degree in G
- ⇒ G admits circle packing where ratio of radii of adjacent circles $\frac{r}{R} \ge \alpha^{\Delta-2}$, $\alpha \approx 0.15$.

Md. Jawaherul Alam

Balanced Packing for Maximal Planar Graphs

[Malitz and Papakostas, 1994]

- \blacksquare G: maximal planar graph
- Δ : maximum vertex-degree in G
- $\Rightarrow G \text{ admits circle packing where ratio of radii of adjacent circles <math>\frac{r}{R} \ge \alpha^{\Delta-2}, \ \alpha \approx 0.15.$

GD 2014

Corollary:

A maximal planar graph with bounded degree and logarithmic diameter has a balanced packing.

🕂 The University of Arizona

Md. Jawaherul Alam

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k \log n}$.

Idea: Triangulate with $O(\Delta)$ degree and $k \log n$ diameter.

Md. Jawaherul Alam

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k \log n}$.

Idea: Triangulate with $O(\Delta)$ degree and $k \log n$ diameter.

Md. Jawaherul Alam

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k \log n}$.

Idea: Triangulate with $O(\Delta)$ degree and $k \log n$ diameter.

Md. Jawaherul Alam

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k \log n}$.

Idea: Triangulate with $O(\Delta)$ degree and $k \log n$ diameter.

Md. Jawaherul Alam

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k \log n}$.

Idea: Triangulate with $O(\Delta)$ degree and $k \log n$ diameter.

Md. Jawaherul Alam

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k \log n}$.

• Idea: Triangulate with $O(\Delta)$ degree and $k \log n$ diameter.

Md. Jawaherul Alam

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k \log n}$.

• Idea: Triangulate with $O(\Delta)$ degree and $k \log n$ diameter.

🕂 The University of Arizona

Md. Jawaherul Alam

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k \log n}$.

Idea: Triangulate with $O(\Delta)$ degree and $k \log n$ diameter.

Theorem:

A planar graph with bounded degree and outerplanarity has a balanced packing.

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

 $\mathrm{GD}\ 2014$

Bounded Degree and Logarithmic Outerplanarity Claim:

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k+logn}$.

• Idea: Triangulate with $O(\Delta)$ degree and $k + \log n$ diameter using weight-balanced tree.

Md. Jawaherul Alam

Bounded Degree and Logarithmic Outerplanarity Claim:

A k-outerplanar graph with maximum degree Δ has packing with ratio of radii $\leq f(\Delta)^{k+logn}$.

• Idea: Triangulate with $O(\Delta)$ degree and $k + \log n$ diameter using weight-balanced tree.

Theorem:

A planar graph with bounded degree and $O(\log n)$ outerplanarity has a balanced packing.

🕂 The University of Arizona

Md. Jawaherul Alam

Negative Results

No balanced circle packing even with

- $\times\,$ Bounded Outerplanarity (2-outerplanar), linear degree.
- $\times\,$ Bounded Degree, Linear Outerplanarity.
- $\times\,$ Bounded treewidth.

🕂 The University of Arizona

Md. Jawaherul Alam

Balanced circle packing

 $\sqrt{\text{trees.}}$

 $\sqrt{}$ cactus graphs.

 $\sqrt{}$ outerpaths.

 $\sqrt{}$ bounded degree and $O(\log n)$ outerplanarity.

 $\times\,$ bounded degree but linear outerplanarity.

 $\times\,$ bounded outerplanarity but linear degree.

 \checkmark bounded tree-depth.

K The University of Arizona

Md. Jawaherul Alam

Balanced circle packing

 $\sqrt{\text{trees.}}$

 $\sqrt{}$ cactus graphs.

 $\sqrt{}$ outerpaths.

 $\sqrt{}$ bounded degree and $O(\log n)$ outerplanarity.

 $\times\,$ bounded degree but linear outerplanarity.

 $\times\,$ bounded outerplanarity but linear degree.

/ bounded tree-depth.

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Summary

- Balanced circle packing for graphs with
 - bounded degree and
 - $O(\log n)$ outerplanarity
 - both conditions are necessary

Balanced circle packing for trees, cactus graphs and outerpaths

Balanced circle packing for graphs with bounded tree-depth

The University of Arizona

Md. Jawaherul Alam

Future Work and Open Problems

- Balanced circle packing for outerplanar graphs
 - Algorithm or counter-example

A THE UNIVERSITY OF ARIZONA

Md. Jawaherul Alam

Future Work and Open Problems

- Balanced circle packing for outerplanar graphs
 - Algorithm or counter-example
- Balanced intersection representation
 - 2-outerplanar graphs?
 - k-outerplanar graphs?

Md. Jawaherul Alam

