Crossing Minimization for

1-page and 2-page Drawings of
 Graphs with Bounded Treewidth

Michael J Bannister

David Eppstein

Book drawing: 1-Page

Book drawing: 2-Page

Crossing minimization

1-Page

- Min is NP-Hard
- Planar in P

2-Page

- Min is NP-Hard
- Planar is NP-Hard
- Fixed vertex NP-Hard

Fixed-paramter tractability

NP-hard implies runtime is likely (at least) exponential
Exponential in what?
Maybe some parameter less than input

Goals:
Find a small parameter p of the inputs
Find an algorithm running in $O\left(f(p) n^{c}\right)$
f must be computable and $c=O(1)$

If achieved, then the problem is fixed-parameter tractable

Previous results

GD 2013 results (B, Eppstein, Simons):
Crossing

$$
\begin{aligned}
& \text { 1-Page } O((5 k)!\omega / 3 n) \\
& \text { 2-Page } O\left(2^{6 k^{3}}\left(6 k^{3}\right)!{ }^{\omega / 3} n\right)
\end{aligned}
$$

Crossed edges

$$
\begin{aligned}
& \text { 1-Page } O((5 k)!\omega / 3 n) \\
& \text { 2-Page } O\left(2^{6 k^{2}}\left(6 k^{2}\right)!{ }^{\omega / 3} n\right)
\end{aligned}
$$

$k=$ cyclomatic number or almost-tree parameter $\omega=$ exponent of matrix multiplication

Treewidth

Treewidth

Tree decomposition

- Tree with nodes subsets of V called bags
- Every $v \in V$ is in some bag
- $v \in B_{1} \cap B_{2} \Rightarrow v \in B \forall B$ on the path from B_{1} to B_{2}.
- $u v \in E \Rightarrow u, v \in B$ for some bag B

Treewidth

Width of the decomposition

- One less than the size of largest bag

Treewidth

- Width of the smallest decomposition

Computability

- NP-Complete, but FPT $O(f(k) n)$

Monadic second order logic $\left(\mathrm{MSO}_{2}\right)$

Vertex and edge variables: $v_{0}, v_{1}, \ldots, e_{0}, e_{1}, \ldots$
Vertex and edge set variables: $V_{0}, V_{1}, \ldots, E_{0}, E_{1}, \ldots$
Binary relations: $=, \in, I$
Propositional logic operations: $\neg, \wedge, \vee, \rightarrow$
Quantifiers: \forall, \exists

Examples of properties expressible in MSO_{2}
k-coloring
connectedness
hamiltonicity
minor containment
planarity
outerplanarity

Courcelle's theorem

Input: A graph G and an MSO_{2}-formula ϕ
Parameter: treewidth $(G)+$ length (ϕ)
Output: Does $G /$ satisfy

Runtime: $f(k, \ell) n$

Application:
Crossing minimization is FPT in the \# crossings
Grohe (2001), Kawarabayashi \& Reed (2007)

1-Page drawing decomposition

1-Page formula construction

For each crossing configuration D with k crossings: $\alpha\left(v_{0}, \ldots, e_{0}, \ldots\right)=$ fixes crossing edges/vertices $\beta\left(U_{0}, U_{1}, \ldots\right)=$ no edges across regions $\gamma\left(U_{0}, U_{1}, \ldots\right)=$ each region is "outerplanar" $\delta_{D}=\left(\exists v_{0}, \ldots\right)\left(\exists e_{0}, \ldots\right)\left(\exists U_{0}, \ldots\right)[\alpha \wedge \beta \wedge \gamma]$

ONEPAGE $_{k}=\bigvee_{D} \delta_{D}$
length $\left(\right.$ ONEPAGE $\left._{k}\right)=2^{O\left(k^{2}\right)}$
1-Page crossing min is FPT!

2-Page planarity idea

Subgraph of planar + Hamiltonian? No subgraph in MSO_{2}.
\exists a part of the edges into two outerplanar graphs?
Different vertex orders.

Our results

- 1-Page crossing minimization is FPT parameter: crossing number
- 2-Page planarity is FPT parameter: treewidth
- 2-Page crossing minimization is FPT parameter: treewidth + crossing number

Open problems

- Can the dependency on the parameters be reduced?
- Is 2-page crossing NP-hard for fixed treewidth?
- Can book thickness k be expressed in MSO_{2} ?

> Thank You!

