Crossing Minimization for 1-page and 2-page Drawings of Graphs with Bounded Treewidth

Michael J Bannister

David Eppstein

Center for Algorithms and Theory of Computation

Donald Bren School of Information and Computer Sciences University of California, Irvine

Book drawing: 1-Page

Book drawing: 2-Page

Crossing minimization

1-Page

- Min is NP-Hard
- Planar in P

2-Page

- Min is NP-Hard
- Planar is NP-Hard
- Fixed vertex NP-Hard

Fixed-paramter tractability

NP-hard implies runtime is likely (at least) exponential Exponential in what?

Maybe some parameter less than input

Goals:

Find a small parameter p of the inputs

Find an algorithm running in $O(f(p)n^c)$

f must be computable and c = O(1)

If achieved, then the problem is fixed-parameter tractable

Previous results

GD 2013 results (B, Eppstein, Simons): Crossing 1-Page $O((5k)!^{\omega/3}n)$ 2-Page $O(2^{6k^3}(6k^3)!^{\omega/3}n)$ Crossed edges 1-Page $O((5k)!^{\omega/3}n)$ 2-Page $O(2^{6k^2}(6k^2)!^{\omega/3}n)$

 $k = {\rm cyclomatic}\ {\rm number}\ {\rm or}\ {\rm almost-tree}\ {\rm parameter}\ \omega = {\rm exponent}\ {\rm of}\ {\rm matrix}\ {\rm multiplication}$

Treewidth

Treewidth

Tree decomposition

- Tree with nodes subsets of V called bags
- Every $v \in V$ is in some bag
- $v \in B_1 \cap B_2 \Rightarrow v \in B \ \forall B$ on the path from B_1 to B_2 .
- $uv \in E \Rightarrow u, v \in B$ for some bag B

Treewidth

Width of the decomposition

One less than the size of largest bag

Treewidth

Width of the smallest decomposition

Computability

• NP-Complete, but FPT O(f(k)n)

Monadic second order logic (MSO₂)

Vertex and edge variables: $v_0, v_1, \ldots, e_0, e_1, \ldots$ Vertex and edge set variables: $V_0, V_1, \ldots, E_0, E_1, \ldots$ Binary relations: $=, \in, I$ Propositional logic operations: $\neg, \land, \lor, \rightarrow$ Quantifiers: \forall, \exists

Examples of properties expressible in MSO₂ *k*-coloring minor containment connectedness planarity hamiltonicity outerplanarity

Courcelle's theorem

Input: A graph G and an MSO₂-formula ϕ Parameter: treewidth(G) + length(ϕ) Output: Does G satisfy ϕ

Runtime: $f(k, \ell)n$

Application:

Crossing minimization is FPT in the # crossings Grohe (2001), Kawarabayashi & Reed (2007)

1-Page drawing decomposition

1-Page formula construction

For each crossing configuration D with k crossings:

$$\begin{aligned} \alpha(v_0, \dots, e_0, \dots) &= \text{fixes crossing edges/vertices} \\ \beta(U_0, U_1, \dots) &= \text{no edges across regions} \\ \gamma(U_0, U_1, \dots) &= \text{each region is "outerplanar"} \\ \delta_D &= (\exists v_0, \dots) (\exists e_0, \dots) (\exists U_0, \dots) [\alpha \land \beta \land \gamma] \end{aligned}$$

ONEPAGE_k = $\bigvee_D \delta_D$ length(ONEPAGE_k) = $2^{O(k^2)}$

1-Page crossing min is FPT !

2-Page planarity idea

Subgraph of planar + Hamiltonian? No subgraph in MSO₂.

∃ a part of the edges into two outerplanar graphs? Different vertex orders.

Our results

 1-Page crossing minimization is FPT parameter: crossing number

 2-Page planarity is FPT parameter: treewidth

 2-Page crossing minimization is FPT parameter: treewidth + crossing number

Open problems

• Can the dependency on the parameters be reduced?

• Is 2-page crossing NP-hard for fixed treewidth?

• Can book thickness k be expressed in MSO_2 ?

Thank You!