

# **The Importance of Being Proper**

(In Clustered-Level Planarity and T-Level Planarity)

GD 2014, 24–26 September, Würzburg

#### Giordano Da Lozzo

#### *joint work with* Patrizio Angelini, Giuseppe Di Battista, Fabrizio Frati, and Vincenzo Roselli

DEPARTMENT OF ENGINEERING • ROMA TRE UNIVERSITY SCHOOL OF INFORMATION TECHNOLOGIES • THE UNIVERSITY OF SYDNEY

### Level Planarity





Theorem [Jünger, Leipert, and Mutzel - GD'98] O(|V|)-time testing algorithm

## Proper Level Graphs





### **Proper Level Graphs**





#### **Common assumption:**

if the input graph is not proper, then we can make it proper by "simply adding dummy vertices"

# Variants of L-Planarity: T-LEVEL PLANARITY





Theorem [Wotzlaw, Speckenmeyer, and Porschen - DAM'12]

 $O(|V|^2)$ -time algorithm if  $(V, E, \gamma)$  is **proper** and  $max_i(|V_i|)$  is **bounded** by a constant

# Variants of L-Planarity: T-LEVEL PLANARITY





Theorem [Wotzlaw, Speckenmeyer, and Porschen - DAM'12]

 $O(|V|^2)$ -time algorithm if  $(V, E, \gamma)$  is **proper** and  $max_i(|V_i|)$  is **bounded** by a constant

# Variants of L-Planarity: CL-PLANARITY





 $(V, E, \gamma, T)$ , Inclusion Tree T

**Theorem [Forster and Bachmaier - SOFSEM'04]** 

O(k|V|)-time algorithm if  $(V, E, \gamma)$  is a **proper hierarchy** and clusters are **level-connected** 

# Variants of L-Planarity: CL-PLANARITY





 $(V, E, \gamma, T)$ , Inclusion Tree T

Theorem [Forster and Bachmaier - SOFSEM'04]

O(k|V|)-time algorithm if  $(V, E, \gamma)$  is a **proper hierarchy** and clusters are **level-connected** 



|            | L-Planarity           | T-Level<br>Planarity | <b>CL-Planarity</b> |
|------------|-----------------------|----------------------|---------------------|
| NON-PROPER | <i>O</i> ( <i>n</i> ) | ?                    | ?                   |
| PROPER     | <i>O</i> ( <i>n</i> ) | ?                    | ?                   |



|            | L-Planarity           | T-Level<br>Planarity               | <b>CL-Planarity</b>                |
|------------|-----------------------|------------------------------------|------------------------------------|
| NON-PROPER | <i>O</i> ( <i>n</i> ) | $\mathcal{NP}	ext{-complete}$      | $\mathcal{NP}	ext{-complete}$      |
| PROPER     | <i>O</i> ( <i>n</i> ) | <i>O</i> ( <i>n</i> <sup>2</sup> ) | <i>O</i> ( <i>n</i> <sup>4</sup> ) |



|            | L-Planarity           | T-Level<br>Planarity               | <b>CL-Planarity</b>                |
|------------|-----------------------|------------------------------------|------------------------------------|
| NON-PROPER | <i>O</i> ( <i>n</i> ) | $\mathcal{NP}	ext{-complete}$      | $\mathcal{NP}	ext{-complete}$      |
| PROPER     | O(n)                  | <i>O</i> ( <i>n</i> <sup>2</sup> ) | <i>O</i> ( <i>n</i> <sup>4</sup> ) |

# The Betweenness Problem



- **input**: pair  $\langle A, C \rangle$ 
  - a finite set A of n objects
  - a set C of m ordered triples  $t_i = \langle \alpha_i, \beta_i, \delta_i \rangle$  of distinct elements of A
- **question**: is there a **linear ordering**  $\mathcal{O}$  of A such that, for each triple  $t_i \in C$ , either  $\mathcal{O} = \langle \dots, \alpha_i, \dots, \beta_i, \dots, \delta_i, \dots \rangle$  or  $\mathcal{O} = \langle \dots, \delta_i, \dots, \beta_i, \dots, \alpha_i, \dots \rangle$ ?



# T-LEVEL PLANARITY is $\mathcal{NP}$ -hard





# T-LEVEL PLANARITY is $\mathcal{NP}$ -hard





# T-LEVEL PLANARITY is $\mathcal{NP}$ -hard

































|            | L-Planarity           | T-Level<br>Planarity               | <b>CL-Planarity</b>                |
|------------|-----------------------|------------------------------------|------------------------------------|
| NON-PROPER | O(n)                  | $\mathcal{NP}	ext{-complete}$      | $\mathcal{NP}	ext{-complete}$      |
| PROPER     | <i>O</i> ( <i>n</i> ) | <i>O</i> ( <i>n</i> <sup>2</sup> ) | <i>O</i> ( <i>n</i> <sup>4</sup> ) |

# Clusters connectivity across levels





Level connectivity of a proper cl-graph  $\begin{cases} \mu-\text{level connected bw } L_i \text{ and } L_{i+1} \\ \mu-\text{level connected} \\ \text{level-connected} \end{cases}$ 

# Clusters connectivity across levels





Level connectivity of a proper cl-graph  $\begin{cases} \mu\text{-level connected bw } L_i \text{ and } L_{i+1} \\ \mu\text{-level connected} \\ \text{level-connected} \end{cases}$ 



#### Lemma 1

Let  $(V, E, \gamma, T)$  be a **proper** instance of **CL-Planarity**. An equivalent **level-connected** instance  $(V^*, E^*, \gamma^*, T^*)$  of **CL-Planarity** of size  $O(|V|^2)$  can be constructed in  $O(|V|^2)$  time.





#### Lemma 1

Let  $(V, E, \gamma, T)$  be a **proper** instance of **CL-Planarity**. An equivalent **level-connected** instance  $(V^*, E^*, \gamma^*, T^*)$  of **CL-Planarity** of size  $O(|V|^2)$  can be constructed in  $O(|V|^2)$  time.







#### Lemma 1

Let  $(V, E, \gamma, T)$  be a **proper** instance of **CL-Planarity**. An equivalent **level-connected** instance  $(V^*, E^*, \gamma^*, T^*)$  of **CL-Planarity** of size  $O(|V|^2)$  can be constructed in  $O(|V|^2)$  time.







#### Lemma 1

Let  $(V, E, \gamma, T)$  be a **proper** instance of **CL-Planarity**. An equivalent **level-connected** instance  $(V^*, E^*, \gamma^*, T^*)$  of **CL-Planarity** of size  $O(|V|^2)$  can be constructed in  $O(|V|^2)$  time.



#### STEP 2



not 
$$\mu$$
-level-connected by  $L_i$  and  $L_{i+1}$   
then

"add a dummy edge bw  $L_i$  and  $L_{i+1}$ "

# From CL-PLANARITY to T-LEVEL PLANARITY

#### Lemma 2

Let  $(V, E, \gamma, T)$  be a **(proper) level-connected** instance of **CL-Planarity**. An equivalent instance **proper**  $(V, E, \gamma, T)$  of **T-Level Planarity** of size O(|V|) can be constructed in O(|V|) time.



# From CL-PLANARITY to T-LEVEL PLANARITY

#### Lemma 2

Let  $(V, E, \gamma, T)$  be a **(proper) level-connected** instance of **CL-Planarity**. An equivalent instance **proper**  $(V, E, \gamma, T)$  of **T-Level Planarity** of size O(|V|) can be constructed in O(|V|) time.



# From CL-PLANARITY to T-LEVEL PLANARITY

#### Lemma 2

Let  $(V, E, \gamma, T)$  be a **(proper) level-connected** instance of **CL-Planarity**. An equivalent instance **proper**  $(V, E, \gamma, T)$  of **T-Level Planarity** of size O(|V|) can be constructed in O(|V|) time.

#### Procedure:

• The underlying level graph is  $(V, E, \gamma)$ 

••••• <u>•</u>•••<u>•</u>••

• for i = 1, ..., k,  $T_i \in \mathcal{T}$  is the subtree of the cluster hierarchy T whose leaves belong to  $L_i$ 

T-;-

•  $T_i$  forces the vertices of each cluster to be consecutive along  $L_i$ 

 level-connectedness and level-planarity impose that vertices of any two clusters have the same relative order in all levels

# Simultaneous Embedding with FE (SEFE<sub>k</sub>)



### **Problem Definition**

- **input**: *k* planar graphs  $G_1 = (V, E_1), G_2 = (V, E_2), \dots, G_k = (V, E_k)$
- question: is there a <u>SEFE of such graphs?</u>



# From *T*-Level Planarity to SEFE<sub>2</sub>



Theorem 6.9, Corollary 6.10 [Schaefer - GD'12]

Given a **proper** instance  $(V, E, \gamma, T)$  of T-LEVEL PLANARITY, deciding

T-LEVEL PLANARITY reduces to the SEFE<sub>2</sub> problem

# From *T*-Level Planarity to SEFE<sub>2</sub>



#### Theorem

Given a **proper** instance  $(V, E, \gamma, \mathcal{T})$  of T-LEVEL PLANARITY, deciding T-LEVEL PLANARITY reduces to the **SEFE**<sub>2</sub> problem, where:

- 1.  $G_1$  and  $G_2$  are **2-connected**
- 2.  $G_{\cap}$  is a **connected**



# From *T*-Level Planarity to SEFE<sub>2</sub>





# Main Results



Clustered-Level Planarity and T-Level Planarity are:

- $\mathcal{NP}$ -Complete for **non-proper** instances
- polynomial-time solvable for proper instances



# Main Results



Clustered-Level Planarity and T-Level Planarity are:

- $\mathcal{NP}$ -Complete for **non-proper** instances
- polynomial-time solvable for proper instances
- Open question [Schaefer, GD'12]: CL-PLANARITY  $\propto$  SEFE<sub>2</sub>?



# Reducibility between Planarity Variants





# **Open Problems**



### *T***-LEVEL PLANARITY and CLUSTERED-LEVEL PLANARITY**

- 1. improving the complexity bounds for proper instances
  - Recall that, a linear-time testing algorithm for *T*-LEVEL PLA-NARITY would also imply a quadratic-time testing algorithm for CL-PLANARITY
- 2. Is CL-PLANARITY still  $\mathcal{NP}$ -hard if the cluster hierarchy is flat?

#### C-PLANARITY

- 1. Is it possible to use similar techniques to tackle the problem of determining the complexity of C-PLANARITY?
  - Recall that, in the CLUSTERED-LEVEL PLANARITY problem none of the C-PLANARITY constraints is dropped

# Coming soon on Springer...





#### Thank you for your attention!

# Coming soon on Springer...



