Column Planarity and Partial Simultaneous Geometric Embedding

Will Evans¹ Vincent Kusters² Maria Saumell³ Bettina Speckmann⁴

¹University of British Columbia

²ETH Zurich

³University of West Bohemia

⁴Technical University Eindhoven

September 25, 2014

Preliminaries

Plane straight-line embedding (PSLE) of a planar graph G = (V, E):

- embed vertices as points;
- embed edges as straight-line segments;
- no two edges intersect.

Preliminaries

Plane straight-line embedding (PSLE) of a planar graph G = (V, E):

- embed vertices as points;
- embed edges as straight-line segments;
- no two edges intersect.

Since a PSLE is completely determined by the drawing of its vertices, we represent a PSLE by a function $\varphi: V \to \mathbb{R}^2$.

Preliminaries

Plane straight-line embedding (PSLE) of a planar graph G = (V, E):

- embed vertices as points;
- embed edges as straight-line segments;
- no two edges intersect.

Since a PSLE is completely determined by the drawing of its vertices, we represent a PSLE by a function $\varphi : V \rightarrow \mathbb{R}^2$.

}

$$V = \{a, b, c, d, e\}$$

$$E = \{ab, ae, bc, be, cd, de\}$$

$$\varphi = \{a \rightarrow (0, 0)$$

$$b \rightarrow (2, 2)$$

$$c \rightarrow (5, 3)$$

$$d \rightarrow (5, 0)$$

$$e \rightarrow (3, 0)\}$$

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity is a strengthening of Unlabeled Level Planarity.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Fully characterized by (Estrella-Balderrama, Fowler, and Kobourov 2007) and (Fowler and Kobourov 2008).

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.
- G = (V, E) is Column Planar (CP) if
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity is a strengthening of Unlabeled Level Planarity.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.
- G = (V, E) is Column Planar (CP) if
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Fully characterized by (Di Giacomo, Didimo, Liotta, Meijer, and Wismath 2014-09-24 10:45-11:05); they call them EAP graphs.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.
- G = (V, E) is Column Planar (CP) if
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity is a strengthening of Unlabeled Level Planarity.

- G = (V, E) is Unlabeled Level Planar (ULP) if
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.
- G = (V, E) is Column Planar (CP) if
 - $\exists \mathbf{x} : V \to \mathbb{R}$:
 - $\forall \mathbf{y} : V \to \mathbb{R}$:
 - $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

A set $R \subseteq V$ is Column Planar in G = (V, E) if

- $\exists \mathbf{x} : R \to \mathbb{R}$:
- $\forall \mathbf{y} : R \rightarrow \mathbb{R}$:
- there is a PLSE φ of G with $\varphi(v) = (\mathbf{x}(v), \mathbf{y}(v))$ for all $v \in R$.

G is ULP

 $\begin{array}{l} \forall \mathbf{y} : V \rightarrow \mathbb{R} \\ \exists \mathbf{x} : V \rightarrow \mathbb{R} \\ (\mathbf{x}, \mathbf{y}) \text{ is PSLE} \end{array}$

G is CP

 $\exists \mathbf{x} : V \to \mathbb{R} \\ \forall \mathbf{y} : V \to \mathbb{R} \\ (\mathbf{x}, \mathbf{y}) \text{ is PSLE} \end{cases}$

 $R \subseteq V \text{ is CP in } G$ $\exists \mathbf{x} : R \to \mathbb{R}$ $\forall \mathbf{y} : R \to \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G G is ULP а е a b $\forall \mathbf{y}: V \to \mathbb{R}$ h CÓ d $\exists \mathbf{x} : V \to \mathbb{R}$ eb а CC d (\mathbf{x}, \mathbf{y}) is PSLE b е d **0**

f

G is CP

 $\exists \mathbf{x} : V \to \mathbb{R} \\ \forall \mathbf{y} : V \to \mathbb{R} \\ (\mathbf{x}, \mathbf{y}) \text{ is PSLE} \end{cases}$

 $R \subseteq V \text{ is CP in } G$ $\exists \mathbf{x} : R \to \mathbb{R}$ $\forall \mathbf{y} : R \to \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

 $R \subseteq V \text{ is } CP \text{ in } G$ $\exists \mathbf{x} : R \rightarrow \mathbb{R}$ $\forall \mathbf{y} : R \rightarrow \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

 $R \subseteq V \text{ is } CP \text{ in } G$ $\exists \mathbf{x} : R \rightarrow \mathbb{R}$ $\forall \mathbf{y} : R \rightarrow \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

 $R \subseteq V \text{ is CP in } G$ $\exists \mathbf{x} : R \to \mathbb{R}$ $\forall \mathbf{y} : R \to \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

 $R \subseteq V \text{ is CP in } G$ $\exists \mathbf{x} : R \to \mathbb{R}$ $\forall \mathbf{y} : R \to \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

 $R \subseteq V \text{ is CP in } G$ $\exists \mathbf{x} : R \rightarrow \mathbb{R}$ $\forall \mathbf{y} : R \rightarrow \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

 $R \subseteq V \text{ is CP in } G$ $\exists \mathbf{x} : R \to \mathbb{R}$ $\forall \mathbf{y} : R \to \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

G is CP

 $\exists \mathbf{x} : V \to \mathbb{R}$

 $\forall \mathbf{y}: V \to \mathbb{R}$

(**x**, **y**) is PSLE

 $R \subseteq V \text{ is CP in } G$ $\exists \mathbf{x} : R \to \mathbb{R}$ $\forall \mathbf{y} : R \to \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

G is CP

 $\exists \mathbf{x} : V \to \mathbb{R}$

 $\forall \mathbf{y}: V \to \mathbb{R}$

(**x**, **y**) is PSLE

b c

0

е

е

 $R \subseteq V \text{ is } CP \text{ in } G$ $\exists \mathbf{x} : R \to \mathbb{R}$ $\forall \mathbf{y} : R \to \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

G is CP

 $\exists \mathbf{x} : V \to \mathbb{R}$

 $\forall \mathbf{y}: V \to \mathbb{R}$

(**x**, **y**) is PSLE

hcd

а

G is CP

 $\exists \mathbf{x} : V \to \mathbb{R}$

 $\forall \mathbf{y}: V \to \mathbb{R}$

(**x**, **y**) is PSLE

h

 $c \mathbf{C}$

eb

C

d

 $R \subseteq V \text{ is CP in } G$ $\exists \mathbf{x} : R \to \mathbb{R}$ $\forall \mathbf{y} : R \to \mathbb{R}$ (\mathbf{x}, \mathbf{y}) extendable to PSLE of G

G is ULP а а $\forall \mathbf{y}: V \to \mathbb{R}$ b $\exists \mathbf{x} : V \to \mathbb{R}$ et d (**x**, **y**) is PSLE е d G is CP a а $\exists \mathbf{x} : V \to \mathbb{R}$ b С $\forall \mathbf{y}: V \to \mathbb{R}$ et CC (**x**, **y**) is PSLE 0 е d $R \subseteq V$ is CP in G а b $\exists \mathbf{x} : R \to \mathbb{R}$ $\forall \mathbf{y} : R \to \mathbb{R}$ eb $c \mathbf{C}$ C (\mathbf{x}, \mathbf{y}) d extendable to

PSLE of G

a а b е а b C h а ρ r d a а h

а

b c d

G is ULP $\forall \mathbf{y} : V \rightarrow \mathbb{R}$ $\exists \mathbf{x} : V \rightarrow \mathbb{R}$ (\mathbf{x}, \mathbf{y}) is PSLE G is CP $\exists \mathbf{x} : V \rightarrow \mathbb{R}$ $\forall \mathbf{y} : V \rightarrow \mathbb{R}$ (\mathbf{x}, \mathbf{y}) is PSLE

 $R \subseteq V$ is CP in G

 $\exists \mathbf{x} : R \to \mathbb{R}$

 $\forall \mathbf{y} : R \to \mathbb{R}$

extendable to PSLE of *G*

 (\mathbf{x}, \mathbf{y})

Theorem

Every tree has a column planar subset of at least $\frac{14}{17}$ n vertices.

Theorem

Every tree has a column planar subset of at least $\frac{14}{17}$ n vertices.

Theorem There exists a family of trees where every column planar subset has at most $(\frac{5}{6} + \epsilon)n$ vertices.

Theorem

Every tree has a column planar subset of at least $\frac{14}{17}$ n vertices.

Theorem There exists a family of trees where every column planar subset has at most $(\frac{5}{6} + \epsilon)n$ vertices.

Corollary

Every two trees on a set of n vertices admit an $\frac{11}{17}$ n-partial SGE.

Theorem

Every tree has a column planar subset of at least $\frac{14}{17}$ n vertices.

Proof.

- **1.** Define when a $R \subseteq V$ in a tree T = (V, E) is nice.
- 2. Every tree has a nice R with $|R| \ge \frac{14}{17}n$. [sketch]
- 3. *R* is nice \implies *R* is column planar in *T*.

[skip]

Theorem

There exists a family of trees where every column planar subset has at most $(\frac{5}{6} + \epsilon)n$ vertices.

Corollary

Every two trees on a set of n vertices admit an $\frac{11}{17}$ n-partial SGE.

Theorem

Every tree has a column planar subset of at least $\frac{14}{17}n \approx 0.82n$ vertices.

Proof.

- 1. Define when a $R \subseteq V$ in a tree T = (V, E) is nice.
- 2. Every tree has a nice R with $|R| \ge \frac{14}{17}n$. [sketch]
- 3. *R* is nice \implies *R* is column planar in *T*.

[skip]

Theorem

There exists a family of trees where every column planar subset has at $most(\frac{5}{6} + \epsilon)n \approx (0.83 + \epsilon)n$ vertices.

Corollary

Every two trees on a set of n vertices admit an $\frac{11}{17}$ n-partial SGE.
Results

Theorem

Every tree has a column planar subset of at least $\frac{14}{17}n \approx 0.82n$ vertices.

Proof.

- 1. Define when a $R \subseteq V$ in a tree T = (V, E) is nice.
- 2. Every tree has a nice R with $|R| \ge \frac{14}{17}n$. [sketch]
- 3. *R* is nice \implies *R* is column planar in *T*.

[skip]

Theorem

There exists a family of trees where every column planar subset has at $most(\frac{5}{6} + \epsilon)n \approx (0.83 + \epsilon)n$ vertices.

Corollary

Every two trees on a set of n vertices admit an $\frac{11}{17}$ n-partial SGE.

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- *R* is nice if for all $v \in R$:
 - ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has \leq 4 nonleaf children in R (\leq 2 are heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Let T = (V, E) be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.

- ▶ $p(v) \in R$: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
- ▶ $p(v) \notin R$: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Results

Theorem

Every tree has a column planar subset of at least $\frac{14}{17}n \approx 0.82n$ vertices.

Proof.

- 1. Define when a $R \subseteq V$ in a tree T = (V, E) is nice.
- 2. Every tree has a nice R with $|R| \ge \frac{14}{17}n$. [sketch]
- 3. *R* is nice \implies *R* is column planar in *T*.

[skip]

Theorem

There exists a family of trees where every column planar subset has at $most(\frac{5}{6} + \epsilon)n \approx (0.83 + \epsilon)n$ vertices.

Corollary

Every two trees on a set of n vertices admit an $\frac{11}{17}$ n-partial SGE.

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct *R* greedily/bottom-up.

Lemma

Results

Theorem

Every tree has a column planar subset of at least $\frac{14}{17}n \approx 0.82n$ vertices.

Proof.

- 1. Define when a $R \subseteq V$ in a tree T = (V, E) is nice.
- 2. Every tree has a nice R with $|R| \ge \frac{14}{17}n$. [sketch]
- 3. *R* is nice \implies *R* is column planar in *T*.

[skip]

Theorem

There exists a family of trees where every column planar subset has at $most(\frac{5}{6} + \epsilon)n \approx (0.83 + \epsilon)n$ vertices.

Corollary

Every two trees on a set of n vertices admit an $\frac{11}{17}$ n-partial SGE.

Partial Simultaneous Geometric Embedding

A simultaneous geometric embedding (SGE) of $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is a pair of PSLEs φ_1 of G_1 and φ_2 of G_2 with $\varphi_1(v) = \varphi_2(v)$ for all $v \in V$.

Partial Simultaneous Geometric Embedding

A simultaneous geometric embedding (SGE) of $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is a pair of PSLEs φ_1 of G_1 and φ_2 of G_2 with $\varphi_1(v) = \varphi_2(v)$ for all $v \in V$.

A simultaneous geometric embedding (SGE) of $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is a pair of PSLEs φ_1 of G_1 and φ_2 of G_2 with $\varphi_1(v) = \varphi_2(v)$ for all $v \in V$.

A *k*-partial simultaneous geometric embedding (*k*-partial SGE) of $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is a pair of PSLEs φ_1 of G_1 and φ_2 of G_2 with $\varphi_1(v) = \varphi_2(v)$ for all $v \in V$ for all $v \in X \subseteq V$ with |X| = k.

A *k*-partial simultaneous geometric embedding (*k*-partial SGE) of $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$ is a pair of PSLEs φ_1 of G_1 and φ_2 of G_2 with $\varphi_1(v) = \varphi_2(v)$ for all $v \in V$ for all $v \in X \subseteq V$ with |X| = k.

Lemma

Let $G_i = (V, E_i)$ and R_i column planar in G_i for i = 1, 2. Then G_1 and G_2 admit a $(|R_1| + |R_2| - n)$ -partial SGE.

Lemma

Let $G_i = (V, E_i)$ and R_i column planar in G_i for i = 1, 2. Then G_1 and G_2 admit a $(|R_1| + |R_2| - n)$ -partial SGE.

Lemma

Let $G_i = (V, E_i)$ and R_i column planar in G_i for i = 1, 2. Then G_1 and G_2 admit a $(|R_1| + |R_2| - n)$ -partial SGE.

Corollary

Every two trees on a set of n vertices admit an $\frac{11}{17}$ n-partial SGE.

Future work

- Is polynomial area sufficient?
- Close the gap between the lower and upper bound for trees.
- Other classes of graphs?

Future work

- Is polynomial area sufficient?
- Close the gap between the lower and upper bound for trees.
- Other classes of graphs?

Thanks!