Column Planarity and Partial Simultaneous Geometric Embedding

Will Evans ${ }^{1}$ Vincent Kusters ${ }^{2}$ Maria Saumell ${ }^{3}$ Bettina Speckmann ${ }^{4}$

${ }^{1}$ University of British Columbia
${ }^{2}$ ETH Zurich
${ }^{3}$ University of West Bohemia
${ }^{4}$ Technical University Eindhoven

September 25, 2014

Preliminaries

Plane straight-line embedding (PSLE) of a planar graph $G=(V, E)$:

- embed vertices as points;
- embed edges as straight-line segments;
- no two edges intersect.

Preliminaries

Plane straight-line embedding (PSLE) of a planar graph $G=(V, E)$:

- embed vertices as points;
- embed edges as straight-line segments;
- no two edges intersect.

Since a PSLE is completely determined by the drawing of its vertices, we represent a PSLE by a function $\varphi: V \rightarrow \mathbb{R}^{2}$.

Preliminaries

Plane straight-line embedding (PSLE) of a planar graph $G=(V, E)$:

- embed vertices as points;
- embed edges as straight-line segments;
- no two edges intersect.

Since a PSLE is completely determined by the drawing of its vertices, we represent a PSLE by a function $\varphi: V \rightarrow \mathbb{R}^{2}$.

$$
\begin{aligned}
& V=\{a, b, c, d, e\} \\
& E=\{a b, a e, b c, b e, c d, d e\} \\
& \varphi=\{a \rightarrow(0,0) \\
& b \rightarrow(2,2) \\
& c \rightarrow(5,3) \\
& d \rightarrow(5,0) \\
&e \rightarrow(3,0)\}
\end{aligned}
$$

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Fully characterized by (Estrella-Balderrama, Fowler, and Kobourov 2007) and (Fowler and Kobourov 2008).

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.
$G=(V, E)$ is Column Planar (CP) if
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.
$G=(V, E)$ is Column Planar (CP) if
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Fully characterized by (Di Giacomo, Didimo, Liotta, Meijer, and Wismath 2014-09-24 10:45-11:05); they call them EAP graphs.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.
$G=(V, E)$ is Column Planar (CP) if
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

Column Planarity

Column Planarity is a strengthening of Unlabeled Level Planarity.
$G=(V, E)$ is Unlabeled Level Planar (ULP) if

- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.
$G=(V, E)$ is Column Planar (CP) if
- $\exists \mathbf{x}: V \rightarrow \mathbb{R}$:
- $\forall \mathbf{y}: V \rightarrow \mathbb{R}$:
- $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ is a PLSE.

A set $R \subseteq V$ is Column Planar in $G=(V, E)$ if

- $\exists \mathbf{x}: R \rightarrow \mathbb{R}$:
- $\forall \mathbf{y}: R \rightarrow \mathbb{R}$:
- there is a PLSE φ of G with $\varphi(v)=(\mathbf{x}(v), \mathbf{y}(v))$ for all $v \in R$.
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE
G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE
$R \subseteq V$ is $C P$ in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to
PSLE of G
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE
$R \subseteq V$ is CP in G $\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to
PSLE of G
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to
PSLE of G
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to
PSLE of G
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to
PSLE of G
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to
PSLE of G
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to
PSLE of G
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to
PSLE of G
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to

PSLE of G
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G $\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to PSLE of G
$a b c d$
$a b c d$
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE
G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

lata

$R \subseteq V$ is CP in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to
PSLE of G

$a b c d$
$a b c d$
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G $\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to PSLE of G

$a b \subset d$
$a b c d$
G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G $\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to PSLE of G

d
a
b
c

$$
a b c d
$$

$$
a b c d
$$

G is ULP
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

G is CP
$\exists \mathbf{x}: V \rightarrow \mathbb{R}$
$\forall \mathbf{y}: V \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y}) is PSLE

$R \subseteq V$ is $C P$ in G
$\exists \mathbf{x}: R \rightarrow \mathbb{R}$
$\forall \mathbf{y}: R \rightarrow \mathbb{R}$
(\mathbf{x}, \mathbf{y})
extendable to PSLE of G

$a b c d$

$a b c d$

Results

Theorem
Every tree has a column planar subset of at least $\frac{14}{17} n$ vertices.

Results

Theorem
Every tree has a column planar subset of at least $\frac{14}{17} n$ vertices.

Theorem

There exists a family of trees where every column planar subset has at $\operatorname{most}\left(\frac{5}{6}+\epsilon\right) n$ vertices.

Results

Theorem
Every tree has a column planar subset of at least $\frac{14}{17} n$ vertices.

Theorem

There exists a family of trees where every column planar subset has at $\operatorname{most}\left(\frac{5}{6}+\epsilon\right) n$ vertices.

Corollary
Every two trees on a set of n vertices admit an $\frac{11}{17} n$-partial SGE.

Results

Theorem

Every tree has a column planar subset of at least $\frac{14}{17} n$ vertices.

Proof.

1. Define when a $R \subseteq V$ in a tree $T=(V, E)$ is nice.
2. Every tree has a nice R with $|R| \geq \frac{14}{17} n$.
3. R is nice $\Longrightarrow R$ is column planar in T.
[skip]

Theorem

There exists a family of trees where every column planar subset has at $\operatorname{most}\left(\frac{5}{6}+\epsilon\right) n$ vertices.

Corollary
Every two trees on a set of n vertices admit an $\frac{11}{17} n$-partial SGE.

Results

Theorem
Every tree has a column planar subset of at least $\frac{14}{17} n \approx 0.82 n$ vertices.

Proof.

1. Define when a $R \subseteq V$ in a tree $T=(V, E)$ is nice.
2. Every tree has a nice R with $|R| \geq \frac{14}{17} n$.
3. R is nice $\Longrightarrow R$ is column planar in T.
[sketch]
[skip]

Theorem

There exists a family of trees where every column planar subset has at most $\left(\frac{5}{6}+\epsilon\right) n \approx(0.83+\epsilon) n$ vertices.

Corollary
Every two trees on a set of n vertices admit an $\frac{11}{17} n$-partial SGE.

Results

Theorem
Every tree has a column planar subset of at least $\frac{14}{17} n \approx 0.82 n$ vertices.

Proof.

1. Define when a $R \subseteq V$ in a tree $T=(V, E)$ is nice.
2. Every tree has a nice R with $|R| \geq \frac{14}{17} n$.
3. R is nice $\Longrightarrow R$ is column planar in T.
[sketch]
[skip]

Theorem

There exists a family of trees where every column planar subset has at most $\left(\frac{5}{6}+\epsilon\right) n \approx(0.83+\epsilon) n$ vertices.

Corollary
Every two trees on a set of n vertices admit an $\frac{11}{17} n$-partial SGE.

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Niceness

Let $T=(V, E)$ be a rooted tree and $R \subseteq V$. A vertex $v \in R$ is heavy if it has a child in R.
R is nice if for all $v \in R$:

- $p(v) \in R: \quad v$ has ≤ 2 nonleaf children in $R(\leq 1$ is heavy);
- $p(v) \notin R: \quad v$ has ≤ 4 nonleaf children in R (≤ 2 are heavy);

Results

Theorem
Every tree has a column planar subset of at least $\frac{14}{17} n \approx 0.82 n$ vertices.

Proof.

1. Define when a $R \subseteq V$ in a tree $T=(V, E)$ is nice.
2. Every tree has a nice R with $|R| \geq \frac{14}{17} n$.
3. R is nice $\Longrightarrow R$ is column planar in T.
[sketch]
[skip]

Theorem

There exists a family of trees where every column planar subset has at most $\left(\frac{5}{6}+\epsilon\right) n \approx(0.83+\epsilon) n$ vertices.

Corollary
Every two trees on a set of n vertices admit an $\frac{11}{17} n$-partial SGE.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Computing a nice R

Algorithm 1: take all leaves and unary nodes. Algorithm 2: construct R greedily/bottom-up.
Lemma
Every tree has a nice R with $|R| \geq \frac{14}{17} n$.

Results

Theorem
Every tree has a column planar subset of at least $\frac{14}{17} n \approx 0.82 n$ vertices.

Proof.

1. Define when a $R \subseteq V$ in a tree $T=(V, E)$ is nice.
2. Every tree has a nice R with $|R| \geq \frac{14}{17} n$.
3. R is nice $\Longrightarrow R$ is column planar in T.
[sketch]
[skip]

Theorem

There exists a family of trees where every column planar subset has at most $\left(\frac{5}{6}+\epsilon\right) n \approx(0.83+\epsilon) n$ vertices.

Corollary
Every two trees on a set of n vertices admit an $\frac{11}{17} n$-partial SGE.

Partial Simultaneous Geometric Embedding

A simultaneous geometric embedding (SGE) of
$G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ is a pair of PSLEs φ_{1} of G_{1} and φ_{2} of G_{2} with $\varphi_{1}(v)=\varphi_{2}(v)$ for all $v \in V$.

Partial Simultaneous Geometric Embedding

A simultaneous geometric embedding (SGE) of
$G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ is a pair of PSLEs φ_{1} of G_{1} and φ_{2} of G_{2} with $\varphi_{1}(v)=\varphi_{2}(v)$ for all $v \in V$.

Partial Simultaneous Geometric Embedding

A simultaneous geometric embedding (SGE) of
$G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ is a pair of PSLEs φ_{1} of G_{1} and φ_{2} of G_{2} with $\varphi_{1}(v)=\varphi_{2}(v)$ for all $v \in V$.

Partial Simultaneous Geometric Embedding

A k-partial simultaneous geometric embedding (k-partial SGE) of $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ is a pair of PSLEs φ_{1} of G_{1} and φ_{2} of G_{2} with $\varphi_{1}(v)=\varphi_{2}(v)$ for all $v \in V$ for all $v \in X \subseteq V$ with $|X|=k$.

Partial Simultaneous Geometric Embedding

A k-partial simultaneous geometric embedding (k-partial SGE) of $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ is a pair of PSLEs φ_{1} of G_{1} and φ_{2} of G_{2} with $\varphi_{1}(v)=\varphi_{2}(v)$ for all $v \in V$ for all $v \in X \subseteq V$ with $|X|=k$.

Partial Simultaneous Geometric Embedding

Lemma
Let $G_{i}=\left(V, E_{i}\right)$ and R_{i} column planar in G_{i} for $i=1,2$. Then G_{1} and G_{2} admit a $\left(\left|R_{1}\right|+\left|R_{2}\right|-n\right)$-partial SGE.

Partial Simultaneous Geometric Embedding

Lemma

Let $G_{i}=\left(V, E_{i}\right)$ and R_{i} column planar in G_{i} for $i=1,2$.
Then G_{1} and G_{2} admit a $\left(\left|R_{1}\right|+\left|R_{2}\right|-n\right)$-partial SGE.

Partial Simultaneous Geometric Embedding

Lemma

Let $G_{i}=\left(V, E_{i}\right)$ and R_{i} column planar in G_{i} for $i=1,2$.
Then G_{1} and G_{2} admit a $\left(\left|R_{1}\right|+\left|R_{2}\right|-n\right)$-partial SGE.

Corollary

Every two trees on a set of n vertices admit an $\frac{11}{17} n$-partial SGE.

Future work

- Is polynomial area sufficient?
- Close the gap between the lower and upper bound for trees.
- Other classes of graphs?

Future work

- Is polynomial area sufficient?
- Close the gap between the lower and upper bound for trees.
- Other classes of graphs?

Thanks!

