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Preliminaries
Plane straight-line embedding (PSLE) of a planar graph G = (V , E):
▸ embed vertices as points;
▸ embed edges as straight-line segments;
▸ no two edges intersect.

Since a PSLE is completely determined by the drawing of its
vertices, we represent a PSLE by a function φ ∶ V → R2.

V = {a, b, c, d , e}
E = {ab, ae , bc, be , cd , de}
φ = {a → (0, 0)

b → (2, 2)
c → (5, 3)
d → (5, 0)
e → (3, 0)}
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Column Planarity
Column Planarity is a strengthening of Unlabeled Level Planarity.

G = (V , E) is Unlabeled Level Planar (ULP) if
▸ ∀y ∶ V → R:
▸ ∃x ∶ V → R:
▸ φ(v) = (x(v), y(v)) is a PLSE.
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Fully characterized by (Estrella-Balderrama, Fowler, and Kobourov 2007)
and (Fowler and Kobourov 2008).
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G is ULP∀y ∶ V → R∃x ∶ V → R(x, y) is PSLE

c e

d f

b

a a
b
c
d
e
f

a
b
c

d

e
f

G is CP∃x ∶ V → R∀y ∶ V → R(x, y) is PSLE

c e

d f

b

a

R ⊆ V is CP in G∃x ∶ R → R∀y ∶ R → R(x, y)
extendable to
PSLE of G
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Results

Theorem
Every tree has a column planar subset of at least 14

17 n vertices.

Proof.

1. De ne when a R ⊆ V in a tree T = (V , E) is nice.
2. Every tree has a nice R with ∣R∣ ≥ 14

17 n. [sketch]

3. R is nice Ô⇒ R is column planar in T . [skip]

Theorem
There exists a family of trees where every column planar subset has at
most ( 56 + є)n vertices.
Corollary
Every two trees on a set of n vertices admit an 11

17n-partial SGE.
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Results

Theorem
Every tree has a column planar subset of at least 14

17 n ≈ 0.82n vertices.

Proof.

1. De ne when a R ⊆ V in a tree T = (V , E) is nice.
2. Every tree has a nice R with ∣R∣ ≥ 14

17 n. [sketch]

3. R is nice Ô⇒ R is column planar in T . [skip]

Theorem
There exists a family of trees where every column planar subset has at
most ( 56 + є)n ≈ (0.83 + є)n vertices.
Corollary
Every two trees on a set of n vertices admit an 11

17n-partial SGE.
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Niceness

Let T = (V , E) be a rooted tree and R ⊆ V . A vertex v ∈ R is heavy if it
has a child in R.

R is nice if for all v ∈ R:

▸ p(v) ∈ R: v has ≤ 2 nonleaf children in R (≤ 1 is heavy);
▸ p(v) /∈ R: v has ≤ 4 nonleaf children in R (≤ 2 are heavy);

v
p(v)

r1 s1

{ {

1× 1×
/

or
v
p(v)

r1,2 s1,2

{ {

2× 2×
/
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Results

Theorem
Every tree has a column planar subset of at least 14

17 n ≈ 0.82n vertices.

Proof.

1. De ne when a R ⊆ V in a tree T = (V , E) is nice.
2. Every tree has a nice R with ∣R∣ ≥ 14

17 n. [sketch]

3. R is nice Ô⇒ R is column planar in T . [skip]

Theorem
There exists a family of trees where every column planar subset has at
most ( 56 + є)n ≈ (0.83 + є)n vertices.
Corollary
Every two trees on a set of n vertices admit an 11

17n-partial SGE.
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Partial Simultaneous Geometric Embedding

A

k-partial

simultaneous geometric embedding (

k-partial

SGE) of
G1 = (V , E1) and G2 = (V , E2) is a pair of PSLEs φ1 of G1 and φ2 of G2
with φ1(v) = φ2(v) for all v ∈ V .

for all v ∈ X ⊆ V with ∣X ∣ = k.
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Partial Simultaneous Geometric Embedding

Lemma
LetGi = (V , Ei) and Ri column planar inGi for i = 1, 2.
ThenG1 andG2 admit a (∣R1∣ + ∣R2∣ − n)-partial SGE.
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Future work

▸ Is polynomial area su�cient?
▸ Close the gap between the lower and upper bound for trees.
▸ Other classes of graphs?

Thanks!
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