Flat Foldings of Plane Graphs with Prescribed Angles and Edge Lengths

Zachary Abel, Erik D. Demaine, Martin L. Demaine, David Eppstein, Anna Lubiw, and Ryuhei Uehara

Graph Drawing 2014

Why is it useful to flatten things?

Many situations in which items can be stored or transported more easily when folded into a more compact configuration, or can be manufactured by folding from flat materials

Automotive airbags

Flat-packed furniture
CC-BY-SA image IKEA Singapore.jpg by Calvin Teo from Wikimedia commons

Shopping bags

Why is it useful to flatten things?

Many situations in which items can be stored or transported more easily when folded into a more compact configuration, or can be manufactured by folding from flat materials

Space missions

PD artist's conception of Pegasus meteoroid detection satellite

Surgical devices
CC-BY-SA image Stent4 fcm.jpg by
Frank C. Müller, Wikimedia commons

Self-folding robots
MIT News, August 2014
Photo: Harvard's Wyss Institute

Flattening things that are already flat

Flat origami: an initially-planar piece of paper is folded into a different state that still lies flat in a plane

CC-BY-SA image "fifty-five stacked hexagons" by Forrest O. from Flickr

Mathematics of flat origami

It's NP-complete to test whether a folding pattern can fold flat [Bern and Hayes 1996]

But if there's only one vertex where all fold lines meet, then...

- Flat foldability is polynomial [Bern and Hayes 1996]
- Maekawa's theorem: |\# mountain folds - \# valley folds $\mid=2$
- Kawasaki's theorem: two alternating sums of angles are equal
- Any folded state can be reached by a continuous motion [Connelly et al. 2003; Streinu and Whiteley 2004]

But what if it's not already flat?

The multi-vertex case is still NP-hard
If we don't know which folds are mountain folds and which are valley folds, then even with one vertex the problem is strongly NP-hard [Abel et al. 2013]

"Locked" states unreachable by continuous motions may exist [Ballinger et al. 2009; Biedl et al. 2002; Connelly et al. 2002]

Our results

Given a two-dimensional complex in which

- All folds must be along edges of the complex
- All folded edges share a common vertex
- Pairs of adjacent faces on the same edge are marked with their target angle: $0, \pi$, or 2π

In linear time we can test whether it has a flat-folded state
In polynomial time we can count all flat-folded states

Dimension reduction

Intersect the complex with a small ball near the vertex

Becomes a one-dimensional graph drawing problem:
finding flat embeddings of plane graphs

Self-touching configurations

How to describe a flat embedding?
What does it mean for such an embedding to be non-crossing?

Self-touching configuration [Connelly et al. 2003; Ribó Mor 2006]: map from a given plane graph to a path together with magnified views of the path vertices and edges

Face independence

Main technical lemma:
G can be flattened if and only if each face of G can be flattened

The number of flat foldings of G is the product of the numbers of flat-folded states of each face

Euler tours

In the given planar embedding, not all faces may be simple cycles...

...but we can convert them to cycles by using an Euler tour, without changing foldability

Greedy crimping

To test whether a single face cycle has a flat-folded state, repeatedly:

- Find an edge of locally-minimum length with opposite-type folds at its endpoints
- Glue it to its neighbors, reducing the complexity of the cycle

[Arkin et al. 2004; Bern and Hayes 1996; Demaine and O'Rourke 2007]

Dynamic programming

Can count folded states of a cycle by finding pairs of vertices (u, v) that can be visible to each other with same coordinate, forming smaller subproblems in which they are glued together

(a)

(b)

(a)

(b)

Conclusions

Can test flat-foldability of one-vertex complexes by reducing dimension to planar graph problem, finding Euler tours of faces, applying greedy crimping to each face

Same method + dynamic programming works for counting flat-folded states

Similar counting algorithms likely apply to many graph drawing problems with analogous face-independence properties (upward planar embeddings, level planar embeddings, ...)

Version where angles between adjacent faces are unspecified but must be in $\{0,2 \pi\}$ (no flat angles allowed) is still open

References, I

Zachary Abel, Erik D. Demaine, Martin L. Demaine, Sarah Eisenstat, Jayson Lynch, Tao B. Schardl, and Isaac Shapiro-Ellowitz. Folding equilateral plane graphs. Internat. J. Comput. Geom. Appl., 23(2): 75-92, 2013. doi: 10.1142/S0218195913600017.
Esther M. Arkin, Michael A. Bender, Erik D. Demaine, Martin L. Demaine, Joseph S. B. Mitchell, Saurabh Sethia, and Steven S. Skiena. When can you fold a map? Comput. Geom. Th. Appl., 29(1): 23-46, 2004. doi: 10.1016/j.comgeo.2004.03.012.
Brad Ballinger, David Charlton, Erik D. Demaine, Martin L. Demaine, John lacono, Ching-Hao Liu, and Sheung-Hung Poon. Minimal Locked Trees. In Proceedings of the 11th Algorithms and Data Structures Symposium, volume 5664 of Lecture Notes in Computer Science, pages 61-73, Banff, Canada, August 2009.
Marshall Bern and Barry Hayes. The complexity of flat origami. In Proc. 7th ACM-SIAM Symposium on Discrete algorithms (SODA '96), pages 175-183, 1996.

References, II

Therese Biedl, Erik D. Demaine, Martin L. Demaine, Sylvain Lazard, Anna Lubiw, Joseph O'Rourke, Steve Robbins, Ileana Streinu, Godfried Toussaint, and Sue Whitesides. A note on reconfiguring tree linkages: trees can lock. Discrete Appl. Math., 117(1-3):293-297, 2002. doi: 10.1016/S0166-218X(01)00229-3.

Robert Connelly, Erik D. Demaine, and Günter Rote. Infinitesimally locked self-touching linkages with applications to locked trees. In Physical Knots: Knotting, Linking, and Folding Geometric Objects in \mathbb{R}^{3} (Las Vegas, NV, 2001), volume 304 of Contemp. Math., pages 287-311. Amer. Math. Soc., Providence, RI, 2002. doi: 10.1090/conm/304/05200.

Robert Connelly, Erik D. Demaine, and Günter Rote. Straightening Polygonal Arcs and Convexifying Polygonal Cycles. Discrete \& Computational Geometry, 30(2):205-239, September 2003.
Erik D. Demaine and Joseph O'Rourke. Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, 2007. ISBN 978-0-521-85757-4. doi: 10.1017/CBO9780511735172.

References, III

Ares Ribó Mor. Realization and counting problems for planar structures. PhD thesis, Free Univ. Berlin, 2006.

Ileana Streinu and Walter Whiteley. Single-Vertex Origami and Spherical Expansive Motions. In Revised Selected Papers from the Japan Conference on Discrete and Computational Geometry, volume 3742 of Lecture Notes in Computer Science, pages 161-173, Tokyo, Japan, October 2004. doi: 10.1007/11589440_17.

