Disjoint edges in topological graphs and the tangled-thrackle conjecture

Andrew Suk, Csaba D. Tóth, Andres J. Ruiz-Vargas

September 25, 2014
Graph Drawing 2014

Thrackles

- Thrackles
- Tangles
- Tangled-thrackles
(2) The main tool
(3) Redrawing

4 Summary

Thrackles

- A drawing of a graph.

Thrackles

- A drawing of a graph.
- Every pair of edges meets exactly once: at a vertex or at a crossing point.

Thrackles

State of affairs

- Conway's conjecture: If a thrackle has n vertices then it has at most n edges.
- If true, it would be tight: every cycle with more than 4 vertices can be drawn as a thrackle.

Thrackles

State of affairs

- Conway's conjecture: If a thrackle has n vertices then it has at most n edges.
- If true, it would be tight: every cycle with more than 4 vertices can be drawn as a thrackle.
- (1998)Lovász, Pach, Szegedy: at most 2n-3 edges.

Thrackles

State of affairs

- Conway's conjecture: If a thrackle has n vertices then it has at most n edges.
- If true, it would be tight: every cycle with more than 4 vertices can be drawn as a thrackle.
- (1998)Lovász, Pach, Szegedy: at most 2n-3 edges.
- (2000)Cairns and Nikolayevsky: 1.5n

Thrackles

State of affairs

- Conway's conjecture: If a thrackle has n vertices then it has at most n edges.
- If true, it would be tight: every cycle with more than 4 vertices can be drawn as a thrackle.
- (1998)Lovász, Pach, Szegedy: at most 2n-3 edges.
- (2000)Cairns and Nikolayevsky: 1.5n
- (2011)Fulek, Pach: 1.428n

Tangles

- A drawing of a graph.

Tangles

- A drawing of a graph.
- Every pair of edges meets exactly once: at a a vertex or at a touching point.

Tangles

- A drawing of a graph.
- Every pair of edges meets exactly once: at a a vertex or at a touching point.
- Touching points are different.

Tangles

- A drawing of a graph.
- Every pair of edges meets exactly once: at a a vertex or at a touching point.
- Touching points are different.

Theorem

Theorem
(Pach, Tóth, Radoičić, 2011) A tangle with n vertices has at most n edges.

Tangled-thrackles

- A drawing of a graph.

Tangled-thrackles

- A drawing of a graph.
- Every pair of edges meets exactly once: at a a vertex, at a crossing or at a touching.

Tangled-thrackles

- A drawing of a graph.
- Every pair of edges meets exactly once: at a a vertex, at a crossing or at a touching.
- Touching and crossing points are all distinct.

Tangled-thrackles

- A drawing of a graph.
- Every pair of edges meets exactly once: at a a vertex, at a crossing or at a touching.
- Touching and crossing points are all distinct.
- What is the maximum number of edges tangled-thrackle with n vertices can have? (Pach, Radoičić, and Tóth)

Tangled-thrackles

- $O\left(n \log ^{12} n\right)$ (Pach, Radoičić, and Tóth, 2012).

Tangled-thrackles

- $O\left(n \log ^{12} n\right)$ (Pach, Radoičić, and Tóth, 2012).
- Conjectured $O(n)$.

Tangled-thrackles

- $O\left(n \log ^{12} n\right)$ (Pach, Radoičić, and Tóth, 2012).
- Conjectured $O(n)$.
- We proved their conjecture.

A first observation: Bounding number of touchings

- No 200 edges touch another set of 200 edges.

A first observation: Bounding number of touchings

- No 200 edges touch another set of 200 edges.
- I.e. the touching graph has no $K_{200,200}$. By Kövári, Sós, Turán number of touchings is at most

$$
c|E|^{2-1 / 200} \leq c\left(n \log ^{12} n\right)^{2-1 / 200} \leq c n^{2-1 / 1000}
$$

Odd-crossing number

Definition

The odd- $-\mathrm{cr}(G)$ is the least number of pairs of edges that cross an odd number of times among all drawings of G.

Definition

The bisection width $b(G)$ is the least number of edges from V_{1} to V_{2} among all partitions V_{1}, V_{2} of V with $V_{i} \geq n / 3$.

Odd crossing number

Theorem

(Pach, Tóth) There is an absolute constant c_{2} such that if G is a graph with n vertices of vertex degrees d_{1}, \ldots, d_{n}, then

$$
b(G) \leq c_{2} \log n \sqrt{\operatorname{odd}-\operatorname{cr}(G)+\sum_{i=1}^{n} d_{i}^{2}} .
$$

Redrawing

- How do we use this theorem?

Redrawing

- How do we use this theorem?
- We assume G is bipartite. Whichever edges are touching we changed them slightly so that they become disjoint.

Redrawing

- We show that if G is drawn as tangled thrackle then its odd-crossing number is small.

Figure : Redrawing procedure

Redrawing

- After redrawing a pair of edges crosses an odd number of times if and only if they were originally touching.

Bounding number of touchings

Theorem

(Pach, Tóth) There is an absolute constant c_{2} such that if G is a graph with n vertices of vertex degrees d_{1}, \ldots, d_{n}, then

$$
b(G) \leq c_{2} \log n \sqrt{\operatorname{odd}-c r(G)+\sum_{i=1}^{n} d_{i}^{2}}
$$

Bounding number of touchings

Theorem

(Pach, Tóth) There is an absolute constant c_{2} such that if G is a graph with n vertices of vertex degrees d_{1}, \ldots, d_{n}, then

$$
b(G) \leq c_{2} \log n \sqrt{o d d-c r(G)+\sum_{i=1}^{n} d_{i}^{2}}
$$

- odd-cr $(G)=$ the number of touchings $\leq c n^{2-1 / 1000}$

Bounding number of touchings

Theorem

(Pach, Tóth) There is an absolute constant c_{2} such that if G is a graph with n vertices of vertex degrees d_{1}, \ldots, d_{n}, then

$$
b(G) \leq c_{2} \log n \sqrt{\operatorname{odd}-\operatorname{cr}(G)+\sum_{i=1}^{n} d_{i}^{2}} .
$$

- odd-cr $(G)=$ the number of touchings $\leq c n^{2-1 / 1000}$
- $b(G) \leq n^{1-1 / 2000}$

Summary

- Small bisection width: bound odd crossing number.

Summary

- Small bisection width: bound odd crossing number.
- Redrawing and Kövári, Sós, Turán.

Summary

- Small bisection width: bound odd crossing number.
- Redrawing and Kövári, Sós, Turán.
- Decompose the graph into two parts using small bisection width and apply induction.
- Show that a tangled thrackle has at most $c\left(n-n^{1-1 / 4000}\right)$ edges.

Some open questions

- What is the smallest t such that there is no $K_{t, t}$ on the touching graph?

Some open questions

- What is the smallest t such that there is no $K_{t, t}$ on the touching graph?
- Thrackle conjecture is still open.

Thank you.

