Planar Octilinear Drawings with One Bend Per Edge

M. A. Bekos ${ }^{1}$, M. Gronemann ${ }^{2}$, M. Kaufmann ${ }^{1}$, R. Krug ${ }^{1}$
${ }^{1}$ Wilhelm Schickard Institut für Informatik, Universität Tübingen, Germany
${ }^{2}$ Institut fur Informatik, Universität zu Köln, Germany

26.09.2014

Motivation

Previous- and Related Work

- M. Nöllenburg: Automated drawings of metro maps [2005] NP-hard if 0 bends is possible

Previous- and Related Work

- M. Nöllenburg: Automated drawings of metro maps [2005] NP-hard if 0 bends is possible
- B. Keszegh et al.: Drawing planar graphs of bounded degree with few slopes [2013] maxdeg. 8 with 2 bends

Previous- and Related Work

- M. Nöllenburg: Automated drawings of metro maps [2005] NP-hard if 0 bends is possible
- B. Keszegh et al.: Drawing planar graphs of bounded degree with few slopes [2013] maxdeg. 8 with 2 bends
- E. Di Giacomo et al.: The planar slope number of subcubic graphs [2014] maxdeg. 3 with 0 bends

Preliminaries

- k-planar graph

Preliminaries

- k-planar graph
- k-connected graph

Preliminaries

- k-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)

Preliminaries

- k-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)
- Partitioning of G into m paths with $P_{0}=\left\{v_{1}, v_{2}\right\}$ and $P_{m}=\left\{v_{n}\right\}$ such that:

Preliminaries

- k-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)
- Partitioning of G into m paths with $P_{0}=\left\{v_{1}, v_{2}\right\}$ and $P_{m}=\left\{v_{n}\right\}$ such that:
- G_{k} is biconnected

Preliminaries

- k-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)
- Partitioning of G into m paths with $P_{0}=\left\{v_{1}, v_{2}\right\}$ and $P_{m}=\left\{v_{n}\right\}$ such that:
- G_{k} is biconnected
- All neighbors of P_{k+1} in G_{k} are on the outer face of G_{k}

Preliminaries

- k-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)
- Partitioning of G into m paths with $P_{0}=\left\{v_{1}, v_{2}\right\}$ and $P_{m}=\left\{v_{n}\right\}$ such that:
- G_{k} is biconnected
- All neighbors of P_{k+1} in G_{k} are on the outer face of G_{k}
- All vertices of P_{k} have at least one neighbor in a P_{j} with $j>k$

Preliminaries

- k-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)
- Partitioning of G into m paths with $P_{0}=\left\{v_{1}, v_{2}\right\}$ and $P_{m}=\left\{v_{n}\right\}$ such that:
- G_{k} is biconnected
- All neighbors of P_{k+1} in G_{k} are on the outer face of G_{k}
- All vertices of P_{k} have at least one neighbor in a P_{j} with $j>k$
- $\left|P_{k}\right|=1$ is called singleton, $\left|P_{k}\right|>1$ is called chain

The Triconnected Case

Start of the construction

The Triconnected Case

First Partition

The Triconnected Case

Placing a chain may require stretching

The Triconnected Case

Placing a chain

The Triconnected Case

Placing a singleton

The Triconnected Case

Placing of v_{n} step 1

The Triconnected Case

Final layout

Results for 4-planar Graphs

Theorem
There exists an infinite class of 4-planar graphs which do not admit bendless octilinear drawings and if they are drawn with at most one bend per edge, then a linear number of bends is required

Results for 4-planar Graphs

Theorem

There exists an infinite class of 4-planar graphs which do not admit bendless octilinear drawings and if they are drawn with at most one bend per edge, then a linear number of bends is required

Theorem

Given a triconnected 4-planar graph G, we can compute in $O(n)$ time an octilinear drawing of G with at most one bend per edge on an $O\left(n^{2}\right) \times O(n)$ integer grid.

Non-triconnected Graphs

- Extend to biconnected by using $S P Q R$-trees and the triconnected algorithm for the R-nodes

Non-triconnected Graphs

- Extend to biconnected by using $S P Q R$-trees and the triconnected algorithm for the R-nodes
- Extend to connected using the $B C$-tree and the biconnected algorithm

The Triconnected Case

Start of the construction

The Triconnected Case

First Partition

The Triconnected Case

Placing a chain

The Triconnected Case

Placing a singleton

The Triconnected Case

Final layout

Bad news

$$
\begin{gathered}
h\left(G_{n}\right)>w\left(G_{n}\right) \\
w\left(G_{n+1}\right) \geq 2 w\left(G_{n}\right) \\
w\left(G_{n+1}\right) \geq h\left(G_{n}\right) \\
h\left(G_{n+1}\right) \geq 2 h\left(G_{n}\right)
\end{gathered}
$$

Super-polynomial area requirement

Properties of the 5-planar Algorithm

Theorem

Given a triconnected 5-planar graph G, we can compute in $O\left(n^{2}\right)$ time an octilinear drawing of G with at most one bend per edge.

Non-triconnected Graphs

- Extend to biconnected by using $S P Q R$-trees and the triconnected algorithm for the R-nodes

Non-triconnected Graphs

- Extend to biconnected by using $S P Q R$-trees and the triconnected algorithm for the R-nodes
- Extend to connected using the $B C$-tree and the biconnected algorithm

One Bend Per Edge Is Not Always Enough

Outer Face that does not admit a one-bend drawing

One Bend Per Edge Is Not Always Enough

6-planar triangulation in which each is adjacent to only degree 6 (grey) vertices and at most one degree 5 (black) vertex

One Bend Per Edge Is Not Always Enough

Construction of an infinite family of graphs

One Bend Per Edge Is Not Always Enough

Construction of an infinite family of graphs

One Bend Per Edge Is Not Always Enough

Construction of an infinite family of graphs

One Bend Per Edge Is Not Always Enough

Construction of an infinite family of graphs

Conclusion

- 4-planar graphs are octilinear drawable with at most one bend per edge in cubic area in linear time

Conclusion

- 4-planar graphs are octilinear drawable with at most one bend per edge in cubic area in linear time
- 5-planar graphs are octilinear drawable with at most one bend per edge in super-polynomial area in quadratic time

Conclusion

- 4-planar graphs are octilinear drawable with at most one bend per edge in cubic area in linear time
- 5-planar graphs are octilinear drawable with at most one bend per edge in super-polynomial area in quadratic time
- There exist 6-planar graphs that do not admit planar octilinear drawings with at most one bend per edge

Open Problems

- Is it possible to have 4-planar octilinear drawings in less than $O\left(n^{3}\right)$ area?

Open Problems

- Is it possible to have 4-planar octilinear drawings in less than $O\left(n^{3}\right)$ area?
- What is the area requirement of 5-planar (triconnected) graphs?

Open Problems

- Is it possible to have 4-planar octilinear drawings in less than $O\left(n^{3}\right)$ area?
- What is the area requirement of 5 -planar (triconnected) graphs?
- Do triangle-free 6-planar graph admit one-bend octilinear drawings?

Open Problems

- Is it possible to have 4-planar octilinear drawings in less than $O\left(n^{3}\right)$ area?
- What is the area requirement of 5-planar (triconnected) graphs?
- Do triangle-free 6-planar graph admit one-bend octilinear drawings?
- What is the complexity to determine whether a 6-planar graph admits a one-bend octilinear drawing?

