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Previous- and Related Work

M. Nöllenburg: Automated drawings of metro maps [2005]
NP-hard if 0 bends is possible

B. Keszegh et al.: Drawing planar graphs of bounded degree with
few slopes [2013]
maxdeg. 8 with 2 bends

E. Di Giacomo et al.: The planar slope number of subcubic
graphs [2014]
maxdeg. 3 with 0 bends
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Preliminaries

k -planar graph

k -connected graph
Canonical ordering (for triconnected graphs)

Partitioning of G into m paths with P0 = {v1,v2} and Pm = {vn}
such that:
Gk is biconnected
All neighbors of Pk+1 in Gk are on the outer face of Gk

All vertices of Pk have at least one neighbor in a Pj with j > k
|Pk |= 1 is called singleton, |Pk |> 1 is called chain
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The Triconnected Case

v1 v2

Start of the construction
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The Triconnected Case

v1 v2v3 v|P1|+2

First Partition
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The Triconnected Case

v1 v2

vi vj

v′i v′j

Placing a chain may require stretching
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The Triconnected Case

v1 v2

vi vj
v′i v′j

Placing a chain
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The Triconnected Case

vi

v1 v2

v

Placing a singleton
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The Triconnected Case

vn

v1 v2v3

Placing of vn step 1
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The Triconnected Case

v2

vn

v3

v1

Final layout
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Results for 4-planar Graphs

Theorem
There exists an infinite class of 4-planar graphs which do not admit
bendless octilinear drawings and if they are drawn with at most one
bend per edge, then a linear number of bends is required

Theorem

Given a triconnected 4-planar graph G, we can compute in O(n) time
an octilinear drawing of G with at most one bend per edge on an
O(n2)×O(n) integer grid.
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Non-triconnected Graphs

Extend to biconnected by using SPQR-trees and the triconnected
algorithm for the R-nodes

Extend to connected using the BC-tree and the biconnected
algorithm
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The Triconnected Case

v1 v2

vi vj
v′i v′j

Placing a chain
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The Triconnected Case

vi

v1 v2

v
v′

Placing a singleton
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The Triconnected Case

vn

v1 v2v3

Final layout
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Bad news

v2v1

Gn

Gn+1

Super-polynomial area
requirement

h(Gn)> w(Gn)

w(Gn+1)≥ 2w(Gn)

w(Gn+1)≥ h(Gn)

h(Gn+1)≥ 2h(Gn)
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Properties of the 5-planar Algorithm

Theorem

Given a triconnected 5-planar graph G, we can compute in O(n2) time
an octilinear drawing of G with at most one bend per edge.
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One Bend Per Edge Is Not Always Enough

v1

v2 v3

Outer Face that does not admit a one-bend drawing
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One Bend Per Edge Is Not Always Enough

6-planar triangulation in which each is adjacent to only degree 6 (grey)
vertices and at most one degree 5 (black) vertex
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One Bend Per Edge Is Not Always Enough
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Construction of an infinite family of graphs
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Conclusion

4-planar graphs are octilinear drawable with at most one bend per
edge in cubic area in linear time

5-planar graphs are octilinear drawable with at most one bend per
edge in super-polynomial area in quadratic time

There exist 6-planar graphs that do not admit planar octilinear
drawings with at most one bend per edge
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Open Problems

Is it possible to have 4-planar octilinear drawings in less than
O(n3) area?

What is the area requirement of 5-planar (triconnected) graphs?

Do triangle-free 6-planar graph admit one-bend octilinear
drawings?

What is the complexity to determine whether a 6-planar graph
admits a one-bend octilinear drawing?
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