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Previous- and Related Work

@ M. Nollenburg: Automated drawings of metro maps [2005]
NP-hard if 0 bends is possible

@ B. Keszegh et al.: Drawing planar graphs of bounded degree with
few slopes [2013]
maxdeg. 8 with 2 bends

@ E. Di Giacomo et al.: The planar slope number of subcubic
graphs [2014]
maxdeg. 3 with 0 bends
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Introduction

Preliminaries

@ K-planar graph
@ k-connected graph
@ Canonical ordering (for triconnected graphs)
e Partitioning of G into m paths with Py = {vq,vo} and Py, = {v,}
such that:
Gy is biconnected
All neighbors of P11 in Gk are on the outer face of Gy
All vertices of Py have at least one neighbor in a P; with j > k
|Pc| = 1 is called singleton, |Px| > 1 is called chain
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Results for 4-planar Graphs

Theorem

There exists an infinite class of 4-planar graphs which do not admit
bendless octilinear drawings and if they are drawn with at most one
bend per edge, then a linear number of bends is required

Theorem

| \

Given a triconnected 4-planar graph G, we can compute in O(n) time
an octilinear drawing of G with at most one bend per edge on an
O(n?) x O(n) integer grid.
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5-planar Graphs
Bad news
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Super-polynomial area
requirement



Properties of the 5-planar Algorithm

Given a triconnected 5-planar graph G, we can compute in O(n2) time
an octilinear drawing of G with at most one bend per edge.
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Non-triconnected Graphs

@ Extend to biconnected by using SPQR-trees and the triconnected
algorithm for the R-nodes

@ Extend to connected using the BC-tree and the biconnected
algorithm
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Outer Face that does not admit a one-bend drawing



6-planar Graphs

One Bend Per Edge Is Not Always Enough
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6-planar triangulation in which each is adjacent to only degree 6 (grey)
vertices and at most one degree 5 (black) vertex
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Conclusion

@ 4-planar graphs are octilinear drawable with at most one bend per
edge in cubic area in linear time

@ 5-planar graphs are octilinear drawable with at most one bend per
edge in super-polynomial area in quadratic time

@ There exist 6-planar graphs that do not admit planar octilinear
drawings with at most one bend per edge
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Conclusion
Open Problems

@ Is it possible to have 4-planar octilinear drawings in less than
O(n®) area?

@ What is the area requirement of 5-planar (triconnected) graphs?

@ Do triangle-free 6-planar graph admit one-bend octilinear
drawings?

@ What is the complexity to determine whether a 6-planar graph
admits a one-bend octilinear drawing?
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