Planar Octilinear Drawings with One Bend Per Edge

M. A. Bekos¹, M. Gronemann², M. Kaufmann¹, R. Krug¹

¹Wilhelm Schickard Institut für Informatik, Universität Tübingen, Germany ²Institut fur Informatik, Universität zu Köln, Germany

26.09.2014

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Motivation				

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Previous	s- and Related \	Nork		

 M. Nöllenburg: Automated drawings of metro maps [2005] NP-hard if 0 bends is possible

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Previous-	and Related	Work		

- M. Nöllenburg: Automated drawings of metro maps [2005] NP-hard if 0 bends is possible
- B. Keszegh et al.: Drawing planar graphs of bounded degree with few slopes [2013] maxdeg. 8 with 2 bends

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Previous-	and Related	Work		

- M. Nöllenburg: Automated drawings of metro maps [2005] NP-hard if 0 bends is possible
- B. Keszegh et al.: Drawing planar graphs of bounded degree with few slopes [2013] maxdeg. 8 with 2 bends
- E. Di Giacomo et al.: The planar slope number of subcubic graphs [2014] maxdeg. 3 with 0 bends

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Preliminari	es			

• k-planar graph

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Preliminarie	es			

- k-planar graph
- k-connected graph

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Prelimina	ries			

- *k*-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Preliminar	es			

- *k*-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)
 - Partitioning of G into m paths with P₀ = {v₁, v₂} and P_m = {v_n} such that:

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Prelimina	ries			

- *k*-planar graph
- k-connected graph

• Canonical ordering (for triconnected graphs)

- Partitioning of *G* into *m* paths with $P_0 = \{v_1, v_2\}$ and $P_m = \{v_n\}$ such that:
- G_k is biconnected

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Prolimina	rioc			

- *k*-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)
 - Partitioning of *G* into *m* paths with $P_0 = \{v_1, v_2\}$ and $P_m = \{v_n\}$ such that:
 - G_k is biconnected
 - All neighbors of P_{k+1} in G_k are on the outer face of G_k

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Preliminar	ies			

- *k*-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)
 - Partitioning of G into m paths with P₀ = {v₁, v₂} and P_m = {v_n} such that:
 - G_k is biconnected
 - All neighbors of P_{k+1} in G_k are on the outer face of G_k
 - All vertices of P_k have at least one neighbor in a P_j with j > k

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Preliminar	ies			

- *k*-planar graph
- k-connected graph
- Canonical ordering (for triconnected graphs)
 - Partitioning of *G* into *m* paths with $P_0 = \{v_1, v_2\}$ and $P_m = \{v_n\}$ such that:
 - G_k is biconnected
 - All neighbors of P_{k+1} in G_k are on the outer face of G_k
 - All vertices of P_k have at least one neighbor in a P_j with j > k
 - $|P_k| = 1$ is called *singleton*, $|P_k| > 1$ is called *chain*

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Trico	nnected Case			

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Trico	nnected Case			

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Tricon	nected Case			

Placing a chain may require stretching

Introduction 4-planar Graphs 5-planar Graphs 6-planar Graphs Conclusion
The Triconnected Case

Placing a chain

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Trico	nnected Case			

Placing a singleton

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Trico	onnected Case			

Placing of v_n step 1

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Tricor	nnected Case			

Final layout

Results for 4-planar Graphs

Theorem

There exists an infinite class of 4-planar graphs which do not admit bendless octilinear drawings and if they are drawn with at most one bend per edge, then a linear number of bends is required

Results for 4-planar Graphs

Theorem

There exists an infinite class of 4-planar graphs which do not admit bendless octilinear drawings and if they are drawn with at most one bend per edge, then a linear number of bends is required

Theorem

Given a triconnected 4-planar graph *G*, we can compute in O(n) time an octilinear drawing of *G* with at most one bend per edge on an $O(n^2) \times O(n)$ integer grid.

• Extend to biconnected by using *SPQR*-trees and the triconnected algorithm for the *R*-nodes

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Non-trico	nnected Grap	าร		

- Extend to biconnected by using *SPQR*-trees and the triconnected algorithm for the *R*-nodes
- Extend to connected using the *BC*-tree and the biconnected algorithm

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Tricor	nected Case			

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Triconr	nected Case			

First Partition

Introduction 4-planar Graphs 5-planar Graphs 6-planar Graphs Conclusion
The Triconnected Case

Placing a chain

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Triconr	ected Case			

Placing a singleton

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
The Tricor	nnected Case			

Final layout

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Bad news				

$$egin{aligned} &h(G_n)>w(G_n)\ &w(G_{n+1})\geq 2w(G_n)\ &w(G_{n+1})\geq h(G_n)\ &h(G_{n+1})\geq h(G_n)\ \end{aligned}$$

Super-polynomial area requirement

5-planar Graphs

6-planar Graph

Conclusion

Properties of the 5-planar Algorithm

Theorem

Given a triconnected 5-planar graph *G*, we can compute in $O(n^2)$ time an octilinear drawing of *G* with at most one bend per edge.

• Extend to biconnected by using *SPQR*-trees and the triconnected algorithm for the *R*-nodes

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Non-trico	nnected Grap	hs		

- Extend to biconnected by using *SPQR*-trees and the triconnected algorithm for the *R*-nodes
- Extend to connected using the *BC*-tree and the biconnected algorithm

4-planar Graphs

5-planar Graphs

6-planar Graphs

Conclusion

One Bend Per Edge Is Not Always Enough

Outer Face that does not admit a one-bend drawing

4-planar Graphs

5-planar Graphs

6-planar Graphs

Conclusion

One Bend Per Edge Is Not Always Enough

6-planar triangulation in which each is adjacent to only degree 6 (grey) vertices and at most one degree 5 (black) vertex

4-planar Graphs

5-planar Graphs

6-planar Graphs

Conclusion

One Bend Per Edge Is Not Always Enough

4-planar Graphs

5-planar Graphs

6-planar Graphs

Conclusion

One Bend Per Edge Is Not Always Enough

4-planar Graphs

5-planar Graphs

6-planar Graphs

Conclusion

One Bend Per Edge Is Not Always Enough

4-planar Graphs

5-planar Graphs

6-planar Graphs

Conclusion

One Bend Per Edge Is Not Always Enough

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Conclusion				

• 4-planar graphs are octilinear drawable with at most one bend per edge in cubic area in linear time

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Conclusion				

- 4-planar graphs are octilinear drawable with at most one bend per edge in cubic area in linear time
- 5-planar graphs are octilinear drawable with at most one bend per edge in super-polynomial area in quadratic time

Introduction	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Conclusion				

- 4-planar graphs are octilinear drawable with at most one bend per edge in cubic area in linear time
- 5-planar graphs are octilinear drawable with at most one bend per edge in super-polynomial area in quadratic time
- There exist 6-planar graphs that do not admit planar octilinear drawings with at most one bend per edge

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Open Pro	blems			

 Is it possible to have 4-planar octilinear drawings in less than O(n³) area?

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Open Proble	eme			

- Is it possible to have 4-planar octilinear drawings in less than O(n³) area?
- What is the area requirement of 5-planar (triconnected) graphs?

	4-planar Graphs	5-planar Graphs	6-planar Graphs	Conclusion
Open Probl	ome			

- Is it possible to have 4-planar octilinear drawings in less than $O(n^3)$ area?
- What is the area requirement of 5-planar (triconnected) graphs?
- Do triangle-free 6-planar graph admit one-bend octilinear drawings?

- Is it possible to have 4-planar octilinear drawings in less than O(n³) area?
- What is the area requirement of 5-planar (triconnected) graphs?
- Do triangle-free 6-planar graph admit one-bend octilinear drawings?
- What is the complexity to determine whether a 6-planar graph admits a one-bend octilinear drawing?