EMBEDDING FOUR-DIRECTIONAL PATHS ON CONVEX POINT SETS

Oswin Aichholzer

Thomas Hackl
Birgit Vogtenhuber

Tamara Mchedlidze

ORIENTED PATH

POINT SET

ORIENTED PATH

POINT SET

UPWARD PLANAR EMBEDDING

ORIENTED PATH

POINT SET

UPWARD PLANAR EMBEDDING

KNOWN RESULTS

KNOWN RESULTS

Always possible for ≤ 10
Directed order types

KNOWN RESULTS

Always possible for ≤ 10
Several special cases of paths

Directed order types
Binucci et al. CGTA10
Angelini el al. GD10

KNOWN RESULTS

Always possible for ≤ 10
Several special cases of paths
Convex point sets

Directed order types
Binucci et al. CGTA10
Angelini el al. GD10
Binucci et al. CGTA10

ORIENTED PATH

POINT SET

UPWARD PLANAR EMBEDDING

QUESTION

ORIENTED PATH

POINT SET

UPWARD PLANAR EMBEDDING

QUESTION

Is it possible for any point set in general position?

ORIENTED PATH

POINT SET

UPWARD PLANAR EMBEDDING

QUESTION

Is it possible for any point set in general position?
We still do not know ©

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?

MOTIVATION \& PREVIOUS WORK

KIT

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?
At least $n 2^{n-3}$, which is achieved by convex point sets

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?
At least $n 2^{n-3}$, which is achieved by convex point sets

How many oriented paths exist?

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?
At least $n 2^{n-3}$, which is achieved by convex point sets

How many oriented paths exist?
There are 2^{n-2} oriented paths
Even for convex point sets it is surprising that embedding always exists

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?
At least $n 2^{n-3}$, which is achieved by convex point sets

How many oriented paths exist?
There are 2^{n-2} oriented paths
Even for convex point sets it is surprising that embedding always exists

Different view on an oriented path

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?
At least $n 2^{n-3}$, which is achieved by convex point sets

How many oriented paths exist?
There are 2^{n-2} oriented paths
Even for convex point sets it is surprising that embedding always exists

Different view on an oriented path

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?
At least $n 2^{n-3}$, which is achieved by convex point sets

How many oriented paths exist?
There are 2^{n-2} oriented paths
Even for convex point sets it is surprising that embedding always exists

Different view on an oriented path

MOTIVATION \& PREVIOUS WORK

LET'S LOOK AT NUMBERS

How many distinct plane spanning paths has a point set?
At least $n 2^{n-3}$, which is achieved by convex point sets

How many oriented paths exist?
There are 2^{n-2} oriented paths
Even for convex point sets it is surprising that embedding always exists

Different view on an oriented path

FOR CONVEX POINT SETS THE NUMBERS ARE TIGHT WHAT HAPPENS WITH FOUR?

FOR CONVEX POINT SETS THE NUMBERS ARE TIGHT WHAT HAPPENS WITH FOUR?

PROBLEM DEFINITION

FOR CONVEX POINT SETS THE NUMBERS ARE TIGHT WHAT HAPPENS WITH FOUR?

PROBLEM DEFINITION

FOR CONVEX POINT SETS THE NUMBERS ARE TIGHT WHAT HAPPENS WITH FOUR?

PROBLEM DEFINITION

FOR CONVEX POINT SETS THE NUMBERS ARE TIGHT WHAT HAPPENS WITH FOUR?

PROBLEM DEFINITION

DIRECTION-CONSISTENT EMBEDDING

FOR CONVEX POINT SETS THE NUMBERS ARE TIGHT WHAT HAPPENS WITH FOUR?

PROBLEM DEFINITION

RESULTS

DIRECTION-CONSISTENT EMBEDDING

FOR CONVEX POINT SETS THE NUMBERS ARE TIGHT WHAT HAPPENS WITH FOUR?

PROBLEM DEFINITION

DIRECTION-CONSISTENT EMBEDDING

RESULTS

Not always possible for four directions

FOR CONVEX POINT SETS THE NUMBERS ARE TIGHT WHAT HAPPENS WITH FOUR?

PROBLEM DEFINITION

DIRECTION-CONSISTENT EMBEDDING

RESULTS

Not always possible for four directions

Always possible for three directions

FOR CONVEX POINT SETS THE NUMBERS ARE TIGHT WHAT HAPPENS WITH FOUR?

PROBLEM DEFINITION

RESULTS

Not always possible for four directions

Always possible for three directions

Can be decided in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time for four directions.

DIRECTION-CONSISTENT EMBEDDING

COUNTING?

There are $n 2^{n-3}$ oriented paths
Each can be labeled in 2^{n-1} ways and
read from 2 end-vertices
In total at most $n 2^{2 n-3}$ plane 4-directional paths on a convex point set

To compare with $2^{2 n-2}$ 4-directional paths

COUNTING?

COUNTEREXAMPLE

There are $n 2^{n-3}$ oriented paths
Each can be labeled in 2^{n-1} ways and
read from 2 end-vertices
In total at most $n 2^{2 n-3}$ plane 4-directional paths on a convex point set

To compare with $2^{2 n-2}$ 4-directional paths

COUNTING?

COUNTEREXAMPLE

There are $n 2^{n-3}$ oriented paths
Each can be labeled in 2^{n-1} ways and
read from 2 end-vertices
In total at most $n 2^{2 n-3}$ plane 4-directional paths on a convex point set

To compare with $2^{2 n-2}$ 4-directional paths

COUNTING?

There are $n 2^{n-3}$ oriented paths
Each can be labeled in 2^{n-1} ways and
read from 2 end-vertices
In total at most $n 2^{2 n-3}$ plane 4-directional paths on a convex point set

To compare with $2^{2 n-2}$ 4-directional paths

COUNTING?

COUNTEREXAMPLE

There are $n 2^{n-3}$ oriented paths
Each can be labeled in 2^{n-1} ways and
read from 2 end-vertices
In total at most $n 2^{2 n-3}$ plane 4-directional paths on a convex point set

To compare with $2^{2 n-2}$ 4-directional paths

COUNTING?

COUNTEREXAMPLE

There are $n 2^{n-3}$ oriented paths
Each can be labeled in 2^{n-1} ways and
read from 2 end-vertices
In total at most $n 2^{2 n-3}$ plane 4-directional paths on a convex point set

To compare with $2^{2 n-2}$ 4-directional paths

COUNTING?

COUNTEREXAMPLE

Each can be labeled in 2^{n-1} ways and
read from 2 end-vertices
In total at most $n 2^{2 n-3}$ plane 4-directional paths on a convex point set

To compare with $2^{2 n-2}$ 4-directional paths

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

THREE-DIRECTIONAL ©

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"ONE-SIDED" LEMMA
A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"ONE-SIDED" LEMMA
A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set

THREE-DIRECTIONAL ©

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"ONE-SIDED" LEMMA
A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THREE-DIRECTIONAL ©

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THREE-DIRECTIONAL ©

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THREE-DIRECTIONAL ©

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"ONE-SIDED" LEMMA

A $\{U, D, R\}$-path admits a directionconsistent embedding on a one-sided convex point set
"PROOF"
Proceed the path backward. Choose the topmost (bottomost, rightmost) free point, if the previous edge has label $U(D, R)$.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

THREE-DIRECTIONAL ©

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"STRIP-CONVEX" LEMMA
A $\{U, R\}$-path admits a direction-consistent embedding on a strip-convex point set

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"STRIP-CONVEX" LEMMA
A $\{U, R\}$-path admits a direction-consistent embedding on a strip-convex point set

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"STRIP-CONVEX" LEMMA
A $\{U, R\}$-path admits a direction-consistent embedding on a strip-convex point set

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"STRIP-CONVEX" LEMMA
A $\{U, R\}$-path admits a direction-consistent embedding on a strip-convex point set

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"STRIP-CONVEX" LEMMA
A $\{\mathrm{U}, \mathrm{R}\}$-path admits a direction-consistent embedding on a strip-convex point set
"PROOF"

Apply the same algorithm. Observe that the identified points are consecutive.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set
"STRIP-CONVEX" LEMMA
A $\{U, R\}$-path admits a direction-consistent embedding on a strip-convex point set
"PROOF"

Apply the same algorithm. Observe that the identified points are consecutive.

THEOREM

Any three-directional path admits a direction-consistent embedding on any convex point set

$\{\mathrm{U}, \mathrm{D}, \mathrm{R}\}-\mathrm{LEMMA}$

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

```
{U,D,R}-LEMMA
A \{U,D,R\}-path admits a direction-consistent embedding on a
``` convex point set*

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\author{
"PROOF"
}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
```

"PROOF"

```

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\author{
"PROOF"
}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
```

"PROOF"

```


\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\) Apply "one-sided" Lemma

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\) Apply "one-sided" Lemma

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma

\section*{THREE-DIRECTIONAL ©}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma

\section*{THREE-DIRECTIONAL ©}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma

\section*{THREE-DIRECTIONAL ©}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma

\section*{THREE-DIRECTIONAL ©}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma

\section*{THREE-DIRECTIONAL ©}
\(\{\mathrm{U}, \mathrm{D}, \mathrm{R}\}-\mathrm{LEMMA}\)
A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma
Both boundary edges are \(\mathbf{D}\)

\section*{THREE-DIRECTIONAL ©}
\(\{\mathrm{U}, \mathrm{D}, \mathrm{R}\}-\mathrm{LEMMA}\)
A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\) Apply "one-sided" Lemma

Both boundary edges are \(\mathbf{D}\)

\section*{THREE-DIRECTIONAL ©}
\(\{\mathrm{U}, \mathrm{D}, \mathrm{R}\}-\mathrm{LEMMA}\)
A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma
Both boundary edges are \(\mathbf{D}\)

\section*{THREE-DIRECTIONAL ©}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\) Apply "one-sided" Lemma

Both boundary edges are \(\mathbf{D}\) Apply "one-sided" Lemma

\section*{\(\{\mathbf{U}, \mathbf{D}, \mathbf{R}\}-L E M M A\)}

A \(\{U, D, R\}\)-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\) Apply "one-sided" Lemma

Both boundary edges are \(\mathbf{D}\) Apply "one-sided" Lemma

\section*{\(\{\mathbf{U}, \mathbf{D}, \mathbf{R}\}-L E M M A\)}

A \(\{U, D, R\}\)-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma
Both boundary edges are \(\mathbf{D}\) Apply "one-sided" Lemma

\section*{\(\{\mathbf{U}, \mathbf{D}, \mathbf{R}\}-L E M M A\)}

A \(\{U, D, R\}\)-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma
Both boundary edges are \(\mathbf{D}\)
Apply "one-sided" Lemma
Sort by y-coordinate

\section*{\(\{\mathbf{U}, \mathbf{D}, \mathbf{R}\}-L E M M A\)}

A \(\{\mathrm{U}, \mathrm{D}, \mathrm{R}\}\)-path admits a direction-consistent embedding on a convex point set*
"PROOF"
One of the boundary edges is \(\mathbf{D}\)
Apply "one-sided" Lemma
Both boundary edges are \(\mathbf{D}\)
Apply "one-sided" Lemma
Sort by y-coordinate

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\author{
"PROOF"
}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
"PROOF"
Both boundary edges are \(\mathbf{U} / \mathbf{R}\)

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\) None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit

\(\square\)

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\) None fit - One fit - Both fit Apply "one-sided" Lemma

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\) None fit - One fit - Both fit Apply "one-sided" Lemma

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\) None fit - One fit - Both fit Apply "one-sided" Lemma

\section*{THREE-DIRECTIONAL ©}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit
Apply "one-sided" Lemma
Apply "strip-convex" Lemma

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are U/R
None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\) None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\) None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\) None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit Apply "strip-convex" Lemma

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit Apply "strip-convex" Lemma Sort by \(y\)-coordinate

\section*{\(\{\mathbf{U}, \mathbf{D}, \mathbf{R}\}-L E M M A\)}

A \(\{U, D, R\}\)-path admits a direction-consistent embedding on a convex point set*
"PROOF"
Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit

\section*{\(\{\mathbf{U}, \mathbf{D}, \mathbf{R}\}-L E M M A\)}

A \(\{U, D, R\}\)-path admits a direction-consistent embedding on a convex point set*
"PROOF"
Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\) None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit
Apply "strip-convex" Lemma

\section*{THREE-DIRECTIONAL ©}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*

\section*{"PROOF"}

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit Apply "strip-convex" Lemma Sort by y-coordinate

\section*{THREE-DIRECTIONAL ©}

\section*{\{U,D,R\}-LEMMA}

A \{U,D,R\}-path admits a direction-consistent embedding on a convex point set*
```

"PROOF"

```

Both boundary edges are \(\mathbf{U} / \mathbf{R}\)
None fit - One fit - Both fit Apply "strip-convex" Lemma Sort by y-coordinate

\section*{THREE-DIRECTIONAL ©}

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set

\section*{THREE-DIRECTIONAL ©}

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"

\section*{THREE-DIRECTIONAL ©}

THEOREM
Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path
Mirror the point set and the path.

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path
Mirror the point set and the path.
Get a \{U,D,L\}-path

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path
Mirror the point set and the path.
Get a \{U,D,L\}-path

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path
Mirror the point set and the path.
Get a \{U,D,L\}-path

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path
Mirror the point set and the path.
Get a \{U,D,L\}-path
Reverce the path and the labels, get a \{U,D,R\}-path

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path
Mirror the point set and the path.
Get a \(\{\mathrm{U}, \mathrm{D}, \mathrm{L}\}\)-path
Reverce the path and the labels, get a \(\{U, D, R\}\)-path

Apply the \(\{U, D, R\}\)-Lemma

\section*{THEOREM}

Any three-directional path admits a direction-consistent embedding on any convex point set
"PROOF"
General convex point set and \(\{U, D, R\}\)-path
Mirror the point set and the path.
Get a \{U,D,L\}-path
Reverce the path and the labels, get a \(\{U, D, R\}\)-path

Apply the \(\{U, D, R\}\)-Lemma

\section*{CONCLUSION}

\section*{EMBEDDING 4-DIRECTIONAL} PATHS ON CONVEX POINT SETS

\section*{RESULTS}

Not always possible for four directions
Always possible for three directions
Can be decided in \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time for four directions.

\section*{EMBEDDING 4-DIRECTIONAL PATHS ON CONVEX POINT SETS}

\section*{OPEN PROBLEMS}

Does every oriented path admit an upward planar embedding on every point set?

\section*{RESULTS}

Not always possible for four directions
Always possible for three directions
Can be decided in \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time for four directions.

\section*{CONCLUSION}

\section*{EMBEDDING 4-DIRECTIONAL PATHS ON CONVEX POINT SETS}

\section*{RESULTS}

Not always possible for four directions
Always possible for three directions
Can be decided in \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time for four directions.

\section*{OPEN PROBLEMS}

Does every oriented path admit an upward planar embedding on every point set?

If yes, can we do the construction in polynomial time? If no, what is the complexity of the problem?

\section*{EMBEDDING 4-DIRECTIONAL PATHS ON CONVEX POINT SETS}

\section*{RESULTS}

Not always possible for four directions
Always possible for three directions
Can be decided in \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time for four directions.

\section*{OPEN PROBLEMS}

Does every oriented path admit an upward planar embedding on every point set?

If yes, can we do the construction in polynomial time? If no, what is the complexity of the problem?

Are the four-directional planar drawings interesting by themselves? (no point set given)

\section*{EMBEDDING 4-DIRECTIONAL PATHS ON CONVEX POINT SETS}

\section*{RESULTS}

Not always possible for four directions
Always possible for three directions
Can be decided in \(\mathrm{O}\left(\mathrm{n}^{2}\right)\) time for four directions.

\section*{OPEN PROBLEMS}

Does every oriented path admit an upward planar embedding on every point set?

If yes, can we do the construction in polynomial time? If no, what is the complexity of the problem?

Are the four-directional planar drawings interesting by themselves? (no point set given)```

