

Drawing Graphs within Restricted Area

Martin Fink Department of Computer Science University of California, Santa Barbara

Joint work with Maximilian Aulbach, Julian Schuhmann, and Alexander Wolff

o directed graph of calculation steps

directed graph of calculation steps

source: studies with many students

source: studies with many students

source: studies with many students

often very large (500 – 1000 vertices)

source: studies with many students

often very large (500 – 1000 vertices)

task: allow human expert to analyze for typical calculation steps and frequent mistakes

task: allow human expert to analyze for typical calculation steps and frequent mistakes

social networks

- social networks
- collaboration/coauthor graphs

- social networks
- collaboration/coauthor graphs

example: invited talk yesterday

- social networks
- collaboration/coauthor graphs

example: invited talk yesterday

Formally:

- Input: weighted graph G = (V, E)
 - vertex sizes w(v) and h(v) for each $v \in V$
 - prescribed drawing area of width W and height H

- social networks
- collaboration/coauthor graphs

example: invited talk yesterday

Formally:

- Input: weighted graph G = (V, E)- vertex sizes w(v) and h(v) for each $v \in V$ - prescribed drawing area of width W and height H
- Output: *nice* drawing of **heavy** subgraph G' of G within the drawing area

- social networks
- collaboration/coauthor graphs

example: invited talk yesterday

Formally:

Input: – weighted graph G = (V, E)depends on application) and h(v) for each $v \in V$ – prescribed drawing area of width W and height HOutput: nice drawing of **heavy** subgraph G' of G within the drawing area

- social networks
- collaboration/coauthor graphs

example: invited talk yesterday

Formally:

Input: - weighted graph G = (V, E)depends on application) and maximize weight $\in V$ - prescribed drawing area of width W and height HOutput: nice drawing of **heavy** subgraph G' of G within the drawing area

- social networks
- collaboration/coauthor graphs
 - We present heuristics for
 - calculation graphs
 - straight-line drawings of general weighted graphs
- Formany:

Input: - weighted graph G = (V, E)depends on application) and maximize weight V- prescribed drawing area of width W and height HOutput: nice drawing of **heavy** subgraph G' of G within the drawing area

Related Work

[Fruchterman, Reingold 1991]: prescribed rectangular drawing area but: vertices can be made arbitrarily small

Related Work

- [Fruchterman, Reingold 1991]: prescribed rectangular drawing area but: vertices can be made arbitrarily small
- constrained graph layout, e.g., [Dwyer et al. 2006]: constrain vertex position to prescribed rectangle but: no strategy for dropping vertices

Related Work

- [Fruchterman, Reingold 1991]: prescribed rectangular drawing area but: vertices can be made arbitrarily small
- constrained graph layout, e.g., [Dwyer et al. 2006]: constrain vertex position to prescribed rectangle but: no strategy for dropping vertices
- interactive methods for graph exploration:
 - [Dwyer et al. 2008]: overview+detail
 - [Da Lozzo et al. 2011]: graph exploration on smartphone

Drawing Calculation Graphs

- hierarchical drawing (left to right)
- start vertex left
- orthogonal edges

- based on Sugiyama framework
- extra phases for removing vertices/edges

- based on Sugiyama framework
- extra phases for removing vertices/edges
- take weights into account

- based on Sugiyama framework
- extra phases for removing vertices/edges
- take weights into account

breaking cycles

- based on Sugiyama framework
- extra phases for removing vertices/edges
- take weights into account

breaking cycles

- based on Sugiyama framework
- extra phases for removing vertices/edges
- take weights into account

breaking cycles

based on Sugiyama framework

layer assignment

- extra phases for removing vertices/edges
- take weights into account

breaking cycles

- based on Sugiyama framework
- extra phases for removing vertices/edges
- take weights into account breaking cycles edge routing layer assignment crossing reduction

Calculation Graphs – Our Approach based on Sugiyama framework extra phases for removing vertices/edges take weights into account breaking cycles edge routing layer assignment crossing reduction

breaking cycles: minimize weight of reverted edges can afford ILP solution

- breaking cycles: minimize weight of reverted edges can afford ILP solution
- layer assignment: first use overfull layers

- breaking cycles: minimize weight of reverted edges can afford ILP solution
- layer assignment: first use overfull layers
- from left to right: remove vertices until layer small enough

- breaking cycles: minimize weight of reverted edges can afford ILP solution
- layer assignment: first use overfull layers
- from left to right: remove vertices until layer small enough

- breaking cycles: minimize weight of reverted edges can afford ILP solution
- layer assignment: first use overfull layers
- from left to right: remove vertices until layer small enough
- remove layers until all vertices fit into drawing area

- breaking cycles: minimize weight of reverted edges can afford ILP solution
- layer assignment: first use overfull layers
- from left to right: remove vertices until layer small enough

- breaking cycles: minimize weight of reverted edges can afford ILP solution
- layer assignment: first use overfull layers
- from left to right: remove vertices until layer small enough
- remove layers until all vertices fit into drawing area
- crossing minimization: adjacent-exchange heuristic can take weights of crossing edges into account

Our Adjustments

- breaking cycles: minimize weight of reverted edges can afford ILP solution
- layer assignment: first use overfull layers
- from left to right: remove vertices until layer small enough
- remove layers until all vertices fit into drawing area
- crossing minimization: adjacent-exchange heuristic can take weights of crossing edges into account

higher cost for crossing heavy edge

Our Adjustments

- breaking cycles: minimize weight of reverted edges can afford ILP solution
- layer assignment: first use overfull layers
- from left to right: remove vertices until layer small enough
- remove layers until all vertices fit into drawing area
- crossing minimization: adjacent-exchange heuristic can take weights of crossing edges into account
- too many crossings: remove edge e based on importance

$$i(e) = \frac{w(e)}{\text{total weight of edges crossing } e}$$

Our Adjustments

- breaking cycles: minimize weight of reverted edges can afford ILP solution
- layer assignment: first use overfull layers
- from left to right: remove vertices until layer small enough
- remove layers until all vertices fit into drawing area
- crossing extension: try to reinsert removed take we objects if space available
- too many crossings: remove edge e based on importance

$$i(e) = \frac{w(e)}{\text{total weight of edges crossing } e}$$

o place vertical segments between consecutive layers

- place vertical segments between consecutive layers
- no unnecessary crossings

- place vertical segments between consecutive layers
- no unnecessary crossings

- place vertical segments between consecutive layers
- no unnecessary crossings
- improve spacing of segments by force-directed method

- place vertical segments between consecutive layers
- no unnecessary crossings
- improve spacing of segments by force-directed method

 $\frac{1}{10}$

 $\frac{19}{40}$

 $\frac{23}{45}$

Example

 $\frac{3}{40}$

38 of 358 vertices (10.6 %); 91.1 % of the vertex weight

Example

38 of 358 vertices (10.6 %); 91.1 % of the vertex weight

Example 2 – Planar Output

4.3 % of 1031 vert.; 76.6 % vertex weight; 70.2 % edge weight

• runtime for graph with 1031 vertices and 1549 edges to A4 paper: $\approx 3s$

• runtime for graph with 1031 vertices and 1549 edges to A4 paper: $\approx 3s$

most of it for edge routing

• runtime for graph with 1031 vertices and 1549 edges to A4 paper: $\approx 3s$

most of it for edge routing

preprocessing removing very light vertices yielded speedup + heavier outputs

• runtime for graph with 1031 vertices and 1549 edges to A4 paper: $\approx 3s$

most of it for edge routing

- preprocessing removing very light vertices yielded speedup + heavier outputs
- especially with vertex/edge reinsertion: no significant influence of layer assignment algorithm

use force-directed approach + standard forces

- use force-directed approach + standard forces
- keep drawing in prescribed frame

start with some initial drawing

- start with some initial drawing
- compute equilibrium layout

- start with some initial drawing
- compute equilibrium layout
- initialize frame F around drawing

- start with some initial drawing
- compute equilibrium layout
- initialize frame F around drawing
- while F too large:

- start with some initial drawing
- compute equilibrium layout
- initialize frame F around drawing
- while F too large:
 - shrink F
 - find new equilibrium

General Graphs – Outline

- start with some initial drawing
- compute equilibrium layout
- initialize frame F around drawing
- while *F* too large:
 - shrink F
 - find new equilibrium
 - if necessary remove vertices/edges

General Graphs – Outline

- start with some initial drawing
- compute equilibrium layout
- initialize frame F around drawing
- while *F* too large:
 - shrink *F*
 - find new equilibrium
 - if necessary remove vertices/edges
- postprocessing: transform straight-line edges to Bézier curves

repulsion between vertices

repulsion between vertices

attraction between adjacent vertices

[Fruchterman, Reingold 1991] parameterized by desired edge length

[Fruchterman, Reingold 1991] parameterized by desired edge length

Forces

iteratively shrink frame

- iteratively shrink frame
- push vertices into frame

- iteratively shrink frame
- push vertices into frame
- compute new equilibrium layout

- iteratively shrink frame
- push vertices into frame
- compute new equilibrium layout
- remove vertices/edges if *necessary*

distances too short \leftrightarrow desired edge length

F

- iteratively shrink frame
- push vertices into frame
- compute new equilibrium layout
- remove vertices/edges if *necessary*

distances too short \leftrightarrow desired edge length

average edge length small: remove a vertex

- iteratively shrink frame
- push vertices into frame
- compute new equilibrium layout
- remove vertices/edges if *necessary*

distances too short \leftrightarrow desired edge length

- average edge length small: remove a vertex
- otherwise: remove an edge

- remove lightest vertex
- remove vertex with worst weight-area ratio

- remove lightest vertex
- remove vertex with worst weight-area ratio

- remove lightest vertex
- remove vertex with worst weight-area ratio

- 💿 remove lightest vertex 🛛 👗
- remove vertex with worst weight-area ratio X
- also take current drawing into account: compute pressure based on forces

- 💿 remove lightest vertex 🛛 👗
- remove vertex with worst weight-area ratio X
- also take current drawing into account: compute pressure based on forces

- 💿 remove lightest vertex 🛛 👗
- 💿 remove vertex with worst weight-area ratio 👗
- also take current drawing into account: compute pressure based on forces

idea: forces in opposite directions

pressure P(v)

- 💿 remove lightest vertex 🛛 👗
- 💿 remove vertex with worst weight-area ratio 👗
- also take current drawing into account: compute pressure based on forces

- 💿 remove lightest vertex 🛛 👗
- 💿 remove vertex with worst weight-area ratio 👗
- also take current drawing into account: compute pressure based on forces

- 💿 remove lightest vertex 🛛 👗
- remove vertex with worst weight-area ratio X
- also take current drawing into account: compute pressure based on forces

compare with opposite octants

- 💿 remove lightest vertex 🛛 👗
- remove vertex with worst weight-area ratio X
- also take current drawing into account: compute pressure based on forces

- compare with opposite octants - worst pair \rightarrow pressure

- 💿 remove lightest vertex 🕺
- remove vertex with worst weight-area ratio X
- also take current drawing into account: compute pressure based on forces

- 💿 remove lightest vertex 🕺
- remove vertex with worst weight-area ratio X
- also take current drawing into account: compute pressure based on forces
- remove vertex with highest stress value

Remark: Boundary Vertices

movement cut off

Remark: Boundary Vertices

- movement cut off
- model as force
- only considered for pressure computation

avoid edge-vertex intersections

avoid edge-vertex intersections

avoid edge-vertex intersections

avoid edge-vertex intersections

draw some edges as quadratic Bézier curves

force-directed computation of curve

Example – Input

Example – Output

Example – Curved Edges

Example – Sparser Output

Example – Sparser Output

Remarks

• GD coauthor graph (1994 - 2012): 950, vertices 2559 edges \rightarrow A4 paper, 10pt font: – runtime \approx 2 minutes

Remarks

- GD coauthor graph (1994 2012): 950, vertices 2559 edges → A4 paper, 10pt font:
 runtime ≈ 2 minutes
- preprocessing removing very light vertices yielded speedup + heavier outputs

Remarks

- GD coauthor graph (1994 2012): 950, vertices 2559 edges → A4 paper, 10pt font:
 runtime ≈ 2 minutes
- preprocessing removing very light vertices yielded speedup + heavier outputs
- activating edge-vertex repulsion only at the end of force-directed phase: weight of edges in output +80%

new problem: find + draw heavy subgraph within prescribed area

- new problem: find + draw heavy subgraph within prescribed area
- heuristic for calculation graphs
- force-directed approach for general graphs

- new problem: find + draw heavy subgraph within prescribed area
- heuristic for calculation graphs
- force-directed approach for general graphs
- nice output drawings

- new problem: find + draw heavy subgraph within prescribed area
- heuristic for calculation graphs
- force-directed approach for general graphs
- nice output drawings
- Problems: no alternative methods to compare with: real performance?
 - speedup