22nd International Symposium on Graph Drawing 24-26 September 2014, Würzburg, Germany

Anchored Drawings of Planar Graphs

Angelini, Da Lozzo, Di Bartolomeo, Di Battista, Hong, Patrignani, Roselli

THE UNIVERSITY OF
SYDNEY

Applicative Context

- Drawing a graph on a geographical map
- Vertices have fixed positions

Drawing Nicely

- Our idea:
- Let vertices move "a bit" around their positions
- Check if this allows a planar drawing of the graph

Anchored Graph Drawing Problem

- Instance
- Planar graph G
- Initial vertex positions $\alpha(v)$
- Maximum distance δ
- Question
- Does G admits a planar drawing
- ...such that vertices move by distance at most δ
- ...from their initial positions α ?

Considered Settings

Distance "Euclidean" "Manhattan" "Uniform"
Function $\quad d=\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}\right)^{1 / 2} d=\mathrm{d} x+\mathrm{d} y \quad d=\max (\mathrm{d} x, \mathrm{~d} y)$

Vertex
 Region

Drawing Style

Straight-line

Rectilinear

Previous work

- NP-hard: straight-line and disks of different size
- Godau. On the difficulty of embedding planar graphs with inaccuracies. 1995
- NP-hard: rectilinear and $\delta=$ inf
- Garg, Tamassia. On the comp. compl. of upward and rectilinear planarity test. 2001
- Application of force-directed algorithms
- Abellanas et. al. Network drawing with geographical constraints on vertices. 2005
- Iterative adjustments that preserve mental map
- Lyons et. al. Algorithms for cluster busting in anchored graph drawing. 1998

Assumption

- No overlap between vertex regions
- Or two vertices may invert their positions
- Very confusing for a user
- Relationship with Clustered Planarity with drawn clusters

Our Results

Metric	Straight-line	Rectilinear
Manhattan	NP-hard	NP-hard
Euclidean	NP-hard	NP-hard
Uniform	NP-hard	Polynomial

Our Results

Metric	Straight-line	Rectilinear
Manhattan	NP-hard	NP-hard
Euclidean	NP-hard	NP-hard
Uniform	NP-hard	Polynomial

Polynomial Case

- Connected graph
- Uniform distance (\square regions)
- Rectilinear drawing

Edge Pipes

- We call pipe the convex hull of two regions
- Minus the regions
- An edge can be drawn only inside a pipe
- In this setting pipes "get rectilinear" too

Rectilinear Edges

- An edge is either horizontal or vertical
- Can be deduced by the region positions
- Visibility is required between two endpoints

Trimming

- Regions and pipes can trim each other
- A trimmed area cannot be used

General Strategy

1. Start from the initial region/pipe configuration 2. While (a trim is possible):
a. Trim unusable parts of pipes and regions
b. Check if a negative configuration is obtained
2. Flag the instance as positive
3. Draw edges according to the current pipes

Trimming Pipes

- VP-overlaps can trim a pipe

Trimming Regions

- VP-overlaps can trim a region

Negative Instances

No visibility

PP-overlap
 (Unavoidable crossing)

An Example of Execution

NP-hard Case

- Euclidean distance (\bigcirc regions)
- Straight-line drawing
- Reduction from Planar 3-SAT

Planar 3-SAT

$$
\begin{aligned}
& \left(x_{1} \vee \neg x_{2} \vee x_{5}\right) \wedge\left(x_{2} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee x_{5}\right) \wedge\left(x_{3} \vee x_{4} \vee\right. \\
& \left.x_{5}\right) ~ C_{2} \\
& C_{2}
\end{aligned}
$$

Planar 3-SAT - Gadgets

Planar 3-SAT - Variable Gadget

Planar 3-SAT - Clause Gadget

Planar 3-SAT - Truth Propagation

Planar 3-SAT - Not Gadget

Planar 3-SAT - Turn Gadget

Planar 3-SAT - Split Gadget

Variable Gadget

True configuration

False configuration

Truth Propagation

Not Gadget

Turn Gadget

Split Gadget

Clause Gadget

Clause Gadget

F-F-F case
The gadget is NOT planar

Clause Gadget

Open Problems

- Do the hard problems belong to NP?
- Still hard with biconnected gadgets. What if triconnected?
- What if we allow regions to partially overlap?
- What if we allow some crossings?

Applicative Context

- Drawing a graph on a geographical map
- Vertices have fixed positions

Clause Gadget (master slide)

Challenges

- Vertex cluttering, edge crossings
- Techniques exist to mitigate cluttering
- However, crossings are still an issue

