

22nd International Symposium on Graph Drawing 24-26 September 2014, Würzburg, Germany

Anchored Drawings of Planar Graphs

Angelini, Da Lozzo, <u>Di Bartolomeo</u>, Di Battista, Hong, Patrignani, Roselli

Applicative Context

- Drawing a graph on a geographical map
- Vertices have fixed positions

Drawing Nicely

• Our idea:

- Let vertices move "a bit" around their positions
- Check if this allows a planar drawing of the graph

Anchored Graph Drawing Problem

Instance

- Planar graph G
- Initial vertex positions $\alpha(v)$
- Maximum distance δ

Question

- Does G admits a planar drawing
- \circ ...such that vertices move by distance at most δ
- ... from their initial positions α ?

Considered Settings

Previous work

• NP-hard: straight-line and disks of different size

• Godau. On the difficulty of embedding planar graphs with inaccuracies. 1995

• NP-hard: rectilinear and δ = inf

• Garg, Tamassia. On the comp. compl. of upward and rectilinear planarity test. 2001

• Application of force-directed algorithms

• Abellanas et. al. *Network drawing with geographical constraints on vertices*. 2005

Iterative adjustments that preserve mental map

• Lyons et. al. Algorithms for cluster busting in anchored graph drawing. 1998

Assumption

No overlap between vertex regions

- Or two vertices may invert their positions
 - Very confusing for a user
- Relationship with Clustered Planarity with drawn clusters

Our Results

Metric	Straight-line	Rectilinear
Manhattan	NP-hard	NP-hard
Euclidean	NP-hard	NP-hard
Uniform	NP-hard	Polynomial

Our Results

Metric	Straight-line	Rectilinear
Manhattan	NP-hard	NP-hard
Euclidean	NP-hard	NP-hard
Uniform	NP-hard	Polynomial

Polynomial Case

- Connected graph
- Uniform distance (regions)
- Rectilinear drawing

Edge Pipes

- We call **pipe** the convex hull of two regions
 - Minus the regions
- An edge can be drawn only inside a pipe
- In this setting pipes "get rectilinear" too

Rectilinear Edges

- An edge is either horizontal or vertical
- Can be deduced by the region positions
- Visibility is required between two endpoints

Trimming

- Regions and pipes can trim each other
- A trimmed area cannot be used

General Strategy

- 1. Start from the initial region/pipe configuration
- 2. While (a trim is possible):
 - a. Trim unusable parts of pipes and regions
 - b. Check if a negative configuration is obtained
- 3. Flag the instance as positive
- 4. Draw edges according to the current pipes

Trimming Pipes

• VP-overlaps can trim a pipe

Trimming Regions

• VP-overlaps can trim a region

Negative Instances

No visibility

PP-overlap (Unavoidable crossing)

NP-hard Case

- Euclidean distance (regions)
- Straight-line drawing
- Reduction from *Planar 3-SAT*

Planar 3-SAT

Planar 3-SAT - Gadgets

Planar 3-SAT - Variable Gadget

Planar 3-SAT - Clause Gadget

Planar 3-SAT - Truth Propagation

Planar 3-SAT - Not Gadget

Planar 3-SAT - Turn Gadget

Planar 3-SAT - Split Gadget

Variable Gadget

True configuration

False configuration

Truth Propagation

Not Gadget

Turn Gadget

Split Gadget

Open Problems

- Do the hard problems belong to NP?
- Still hard with biconnected gadgets. What if triconnected?
- What if we allow regions to partially overlap?
- What if we allow some crossings?

Applicative Context

- Drawing a graph on a geographical map
- Vertices have fixed positions

Clause Gadget (master slide)

Challenges

- Vertex cluttering, edge crossings
- Techniques exist to mitigate cluttering
- However, crossings are still an issue