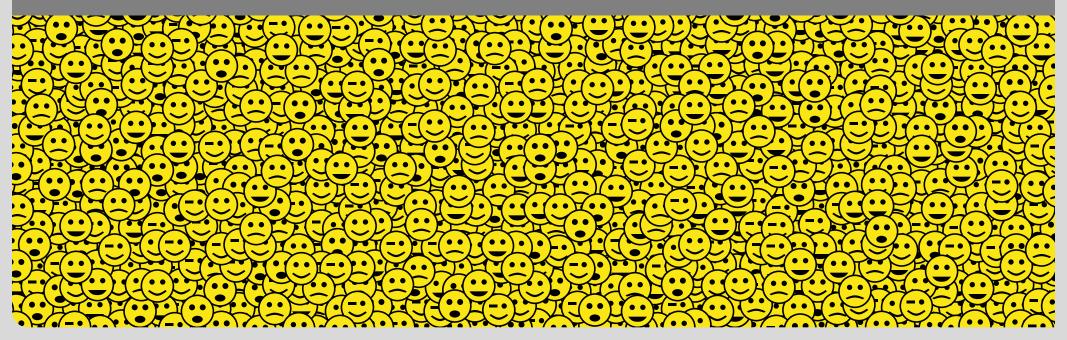


A New Perspective on Clustered Planarity as a Combinatorial Embedding Problem

Würzburg · GD 2014 · September 26 <u>Thomas Bläsius</u> · Ignaz Rutter

INSTITUTE OF THEORETICAL INFORMATICS · PROF. DR. DOROTHEA WAGNER

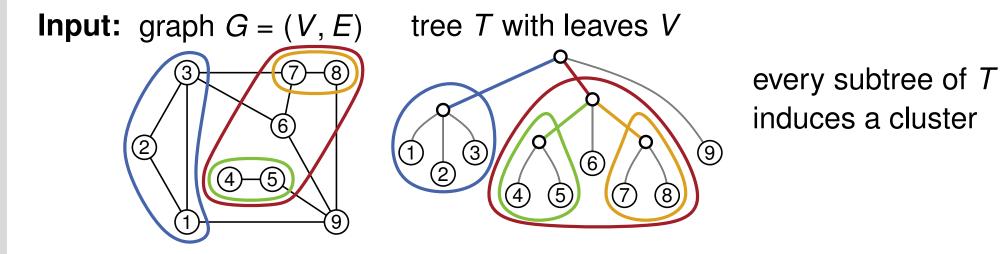


KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

www.kit.edu

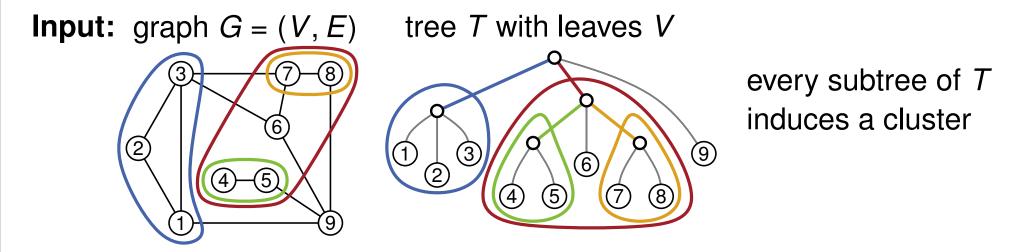
Clustered Planarity

[Lengauer 1989] [Feng, Cohen, Eades 1995]



Clustered Planarity

[Lengauer 1989] [Feng, Cohen, Eades 1995]



Find: drawing of G together with regions representing the clusters

- no edge-crossings
- no cluster-crossings
 no (unnecessary) edge-cluster-crossings

Give you an Understanding of our Perspective on C-Planarity

- the cd-tree and a characterization
- flat clusterings and constrained planarity
- related work from the new perspective

no new c-planarity variants will be solved in this part

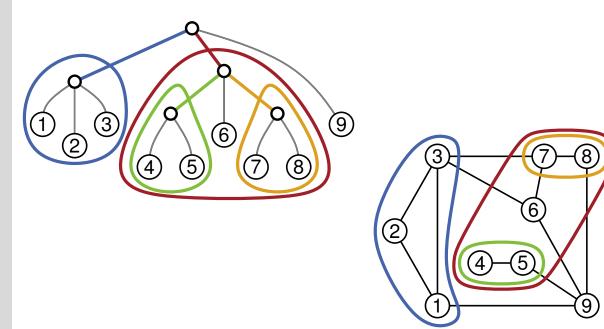
Give you an Understanding of our Perspective on C-Planarity

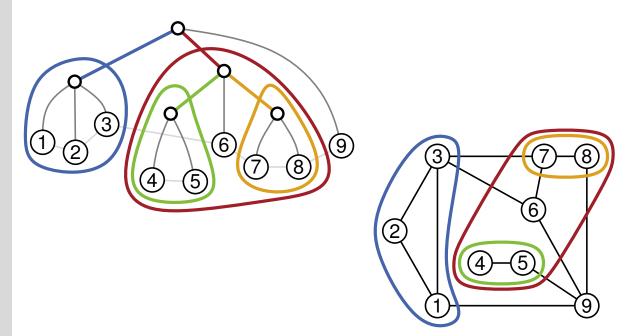
- the cd-tree and a characterization
- flat clusterings and constrained planarity
- related work from the new perspective

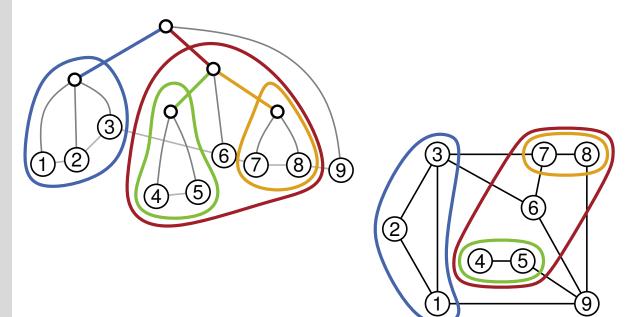
no new c-planarity variants will be solved in this part

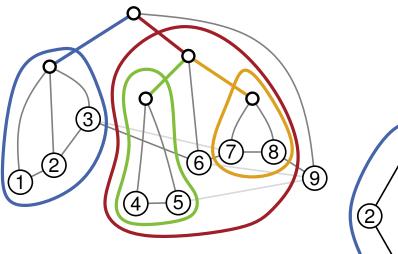
Final Remarks

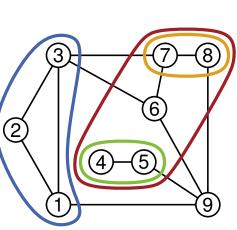
new cases we can solve

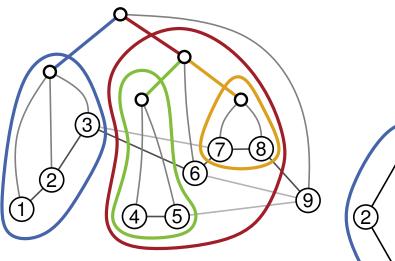


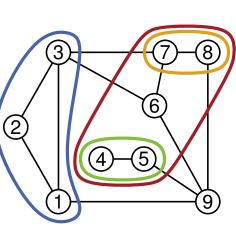


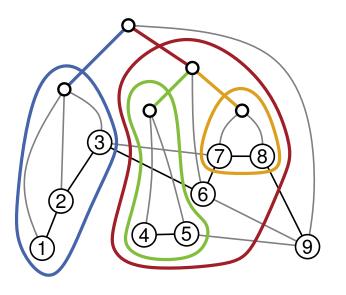


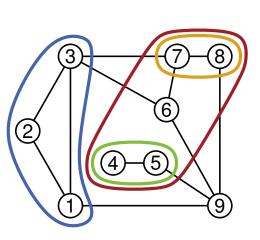


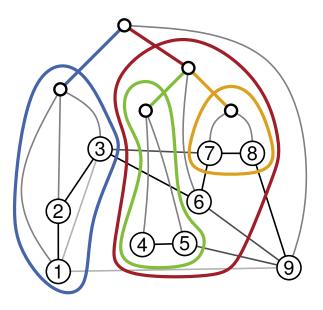


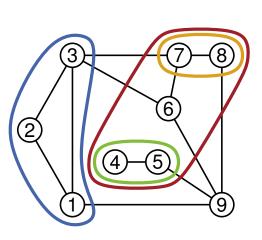


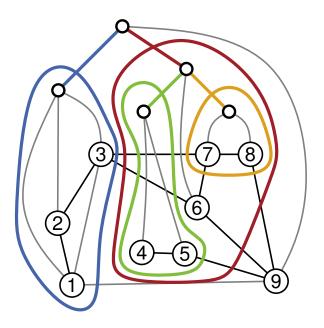


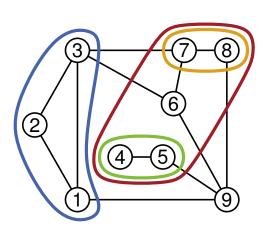


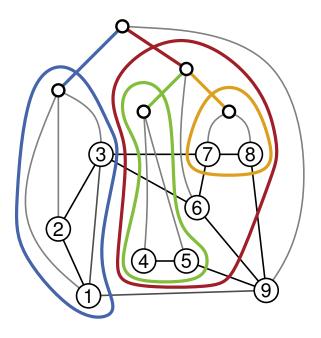


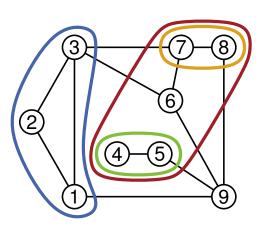


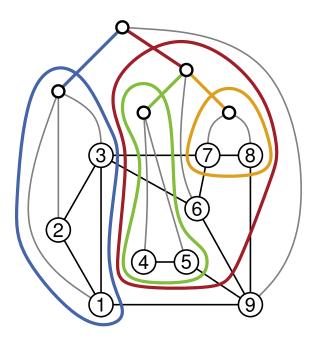


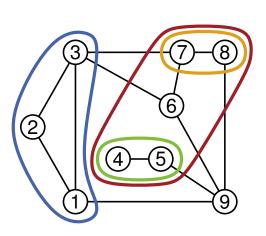


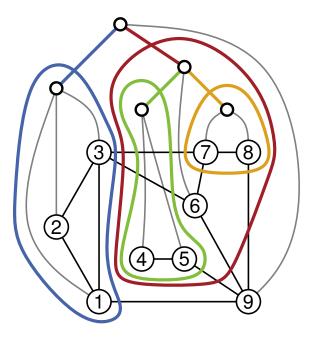


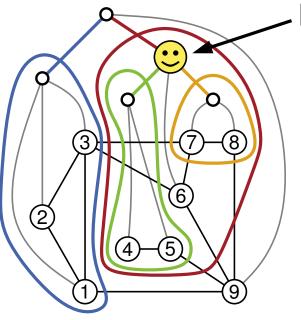


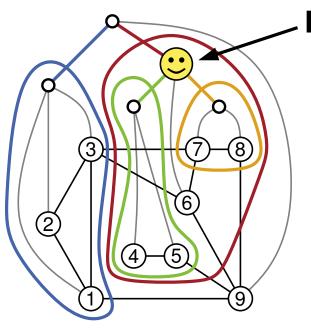






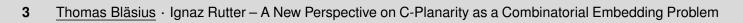


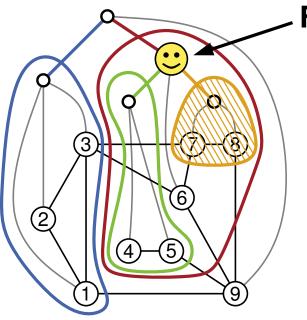




From the perspective of this node, there arenode 6

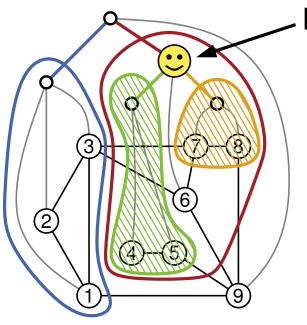
6



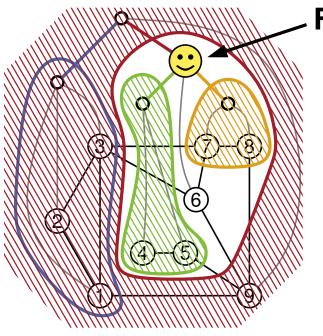


- From the perspective of this node, there are
 - node 6
 - orange part

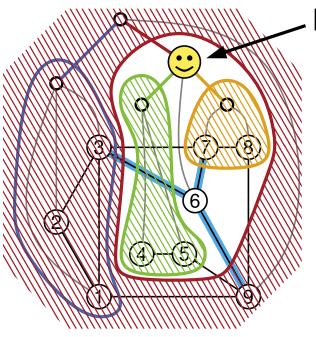
6



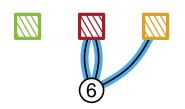
- node 6
- orange part
- green part

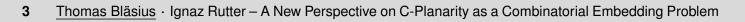


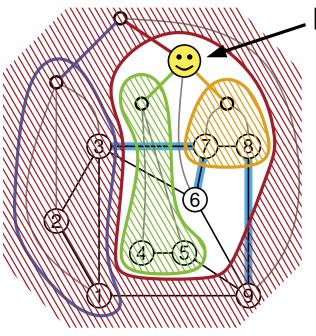
- node 6
- orange part
- green part
- red part



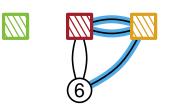
- node 6
- orange part
- green part
- red part
- some edges

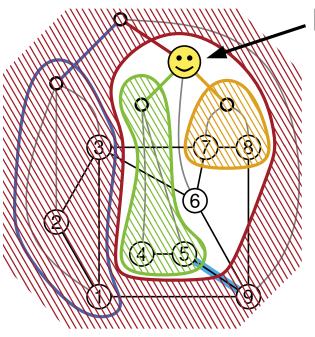




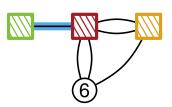


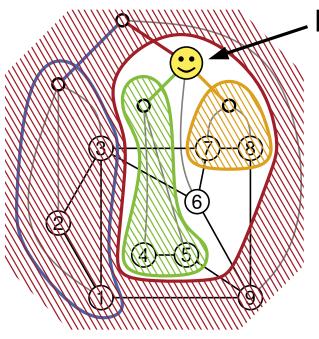
- node 6
- orange part
- green part
- red part
- some edges



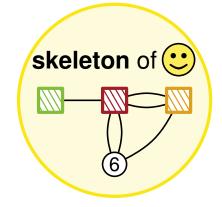


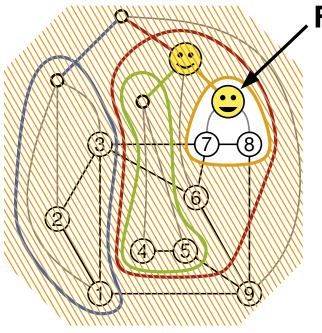
- node 6
- orange part
- green part
- red part
- some edges



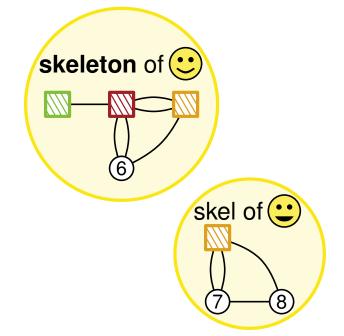


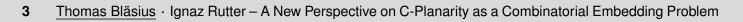
- node 6
- orange part
- green part
- red part
- some edges

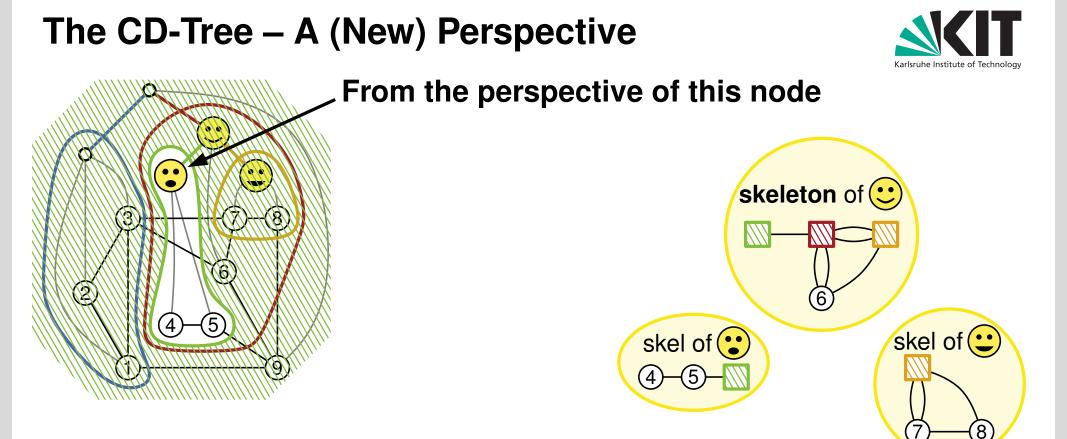


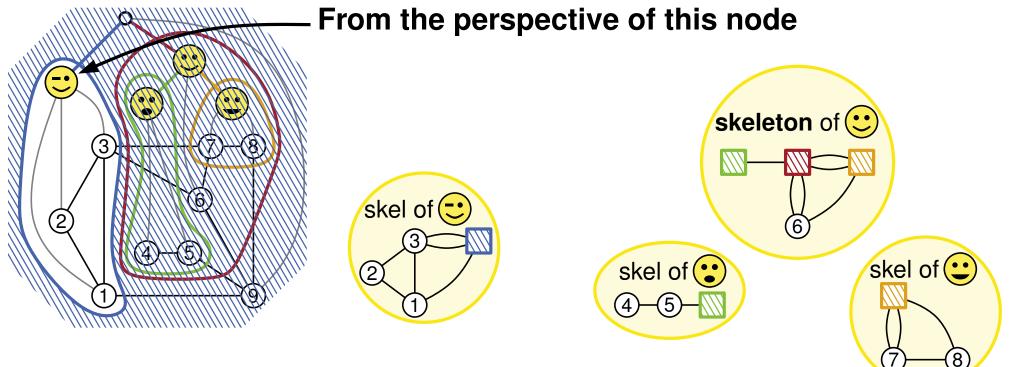


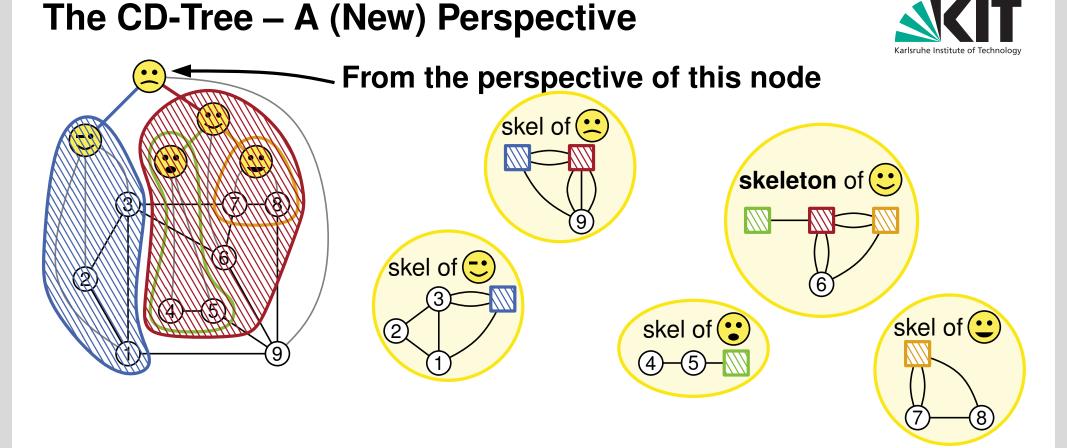
From the perspective of this node

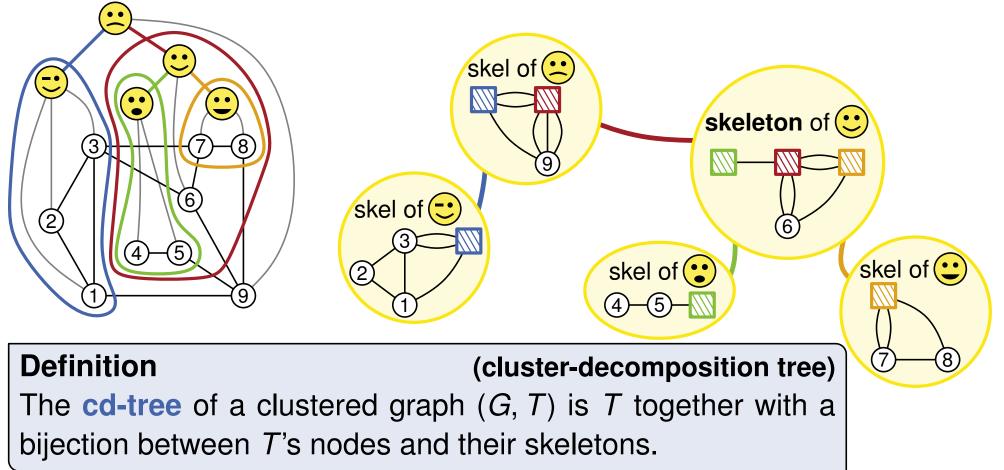


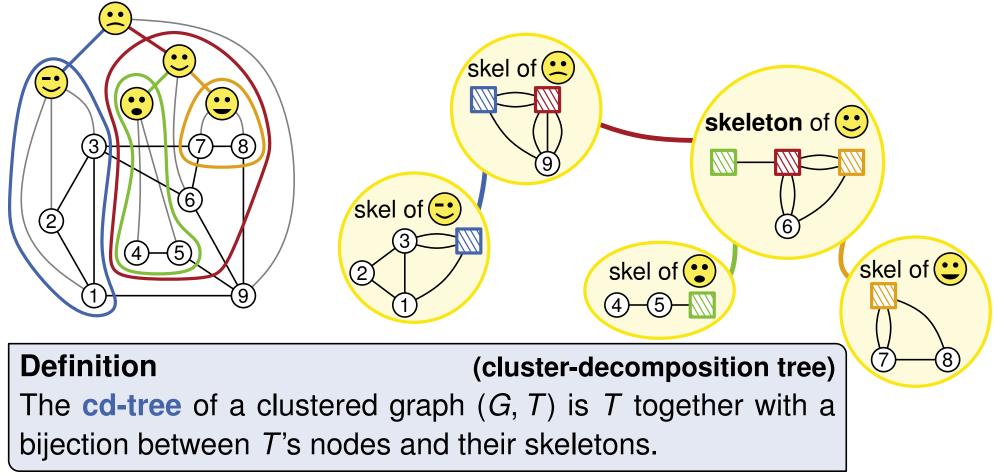




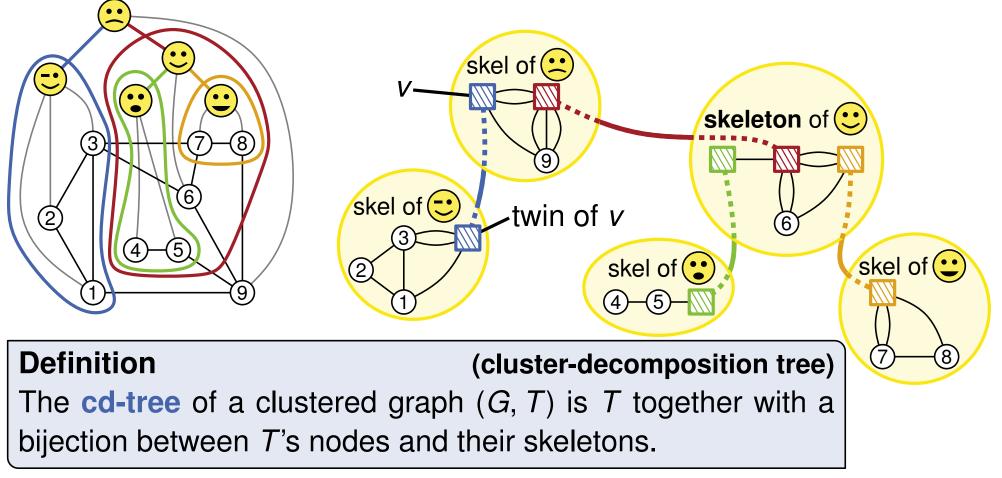




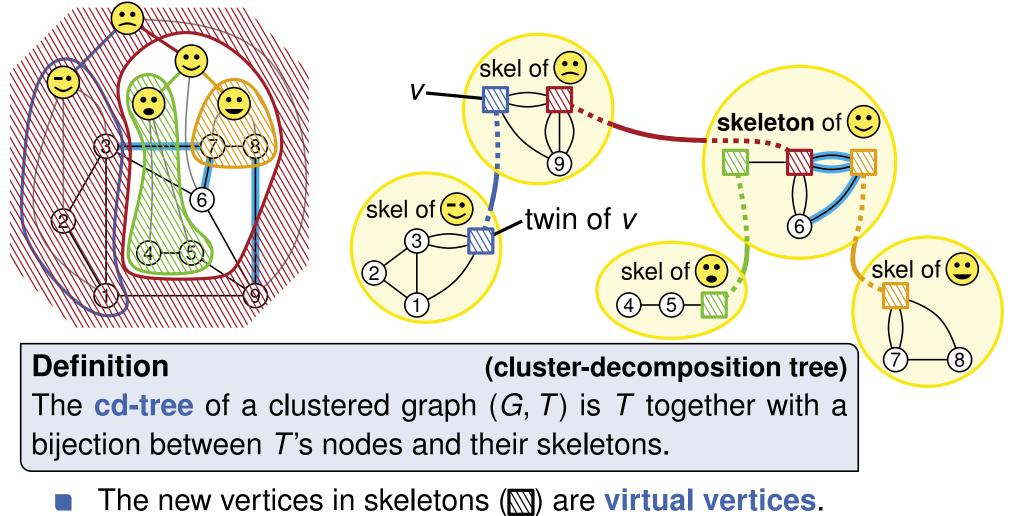




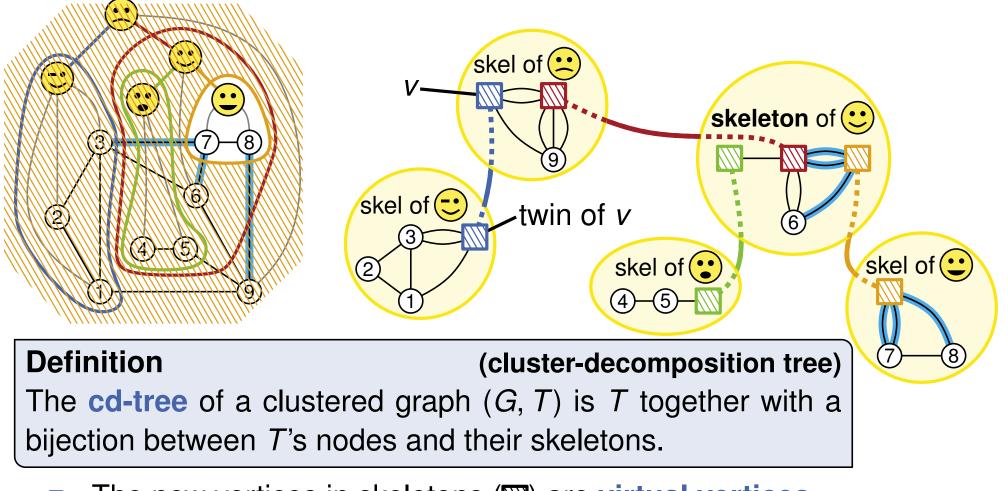
The new vertices in skeletons (IM) are virtual vertices.



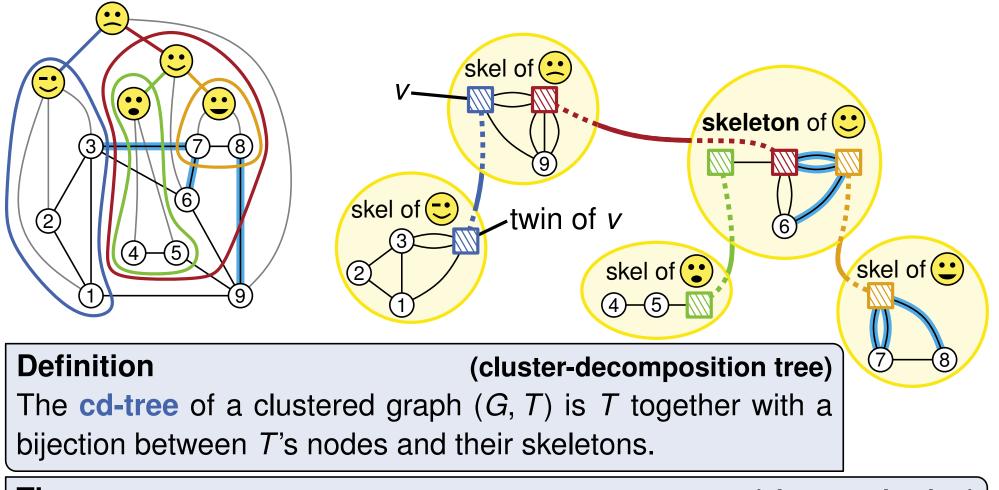
- The new vertices in skeletons () are virtual vertices.
- Every virtual vertex has a twin.



- Every virtual vertex has a twin.
- Twins have the same incident edges.



- The new vertices in skeletons () are virtual vertices.
- Every virtual vertex has a twin.
- Twins have the same incident edges.

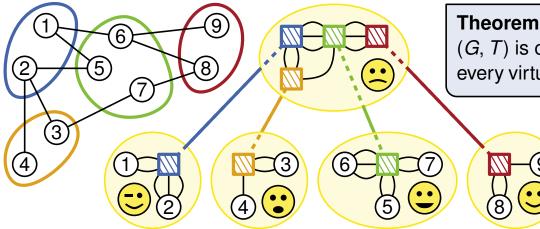


Theorem

(characterization)

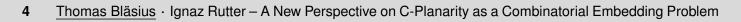
(G, T) is c-planar \Leftrightarrow one can embed the skeletons such that every virtual vertex and its twin have the same edge-ordering.

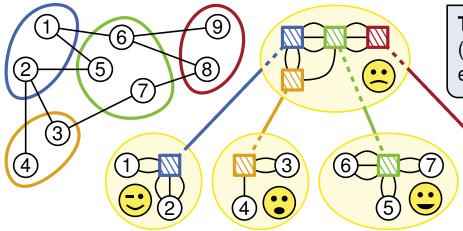
Flat-Clustered Graphs – Isolated Vertices



(characterization)

(G, T) is c-planar \Leftrightarrow one can embed the skeletons such that every virtual vertex and its twin have the same edge-ordering.





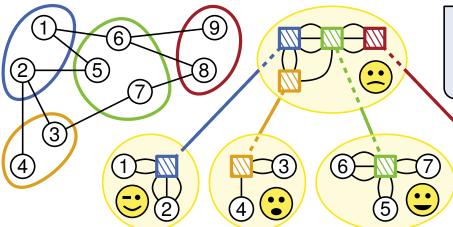
Theorem

(characterization)

(G, T) is c-planar \Leftrightarrow one can embed the skeletons such that every virtual vertex and its twin have the same edge-ordering.

Why is this instance special?

- flat hierarchy
- cluster = isolated vertices



Theorem

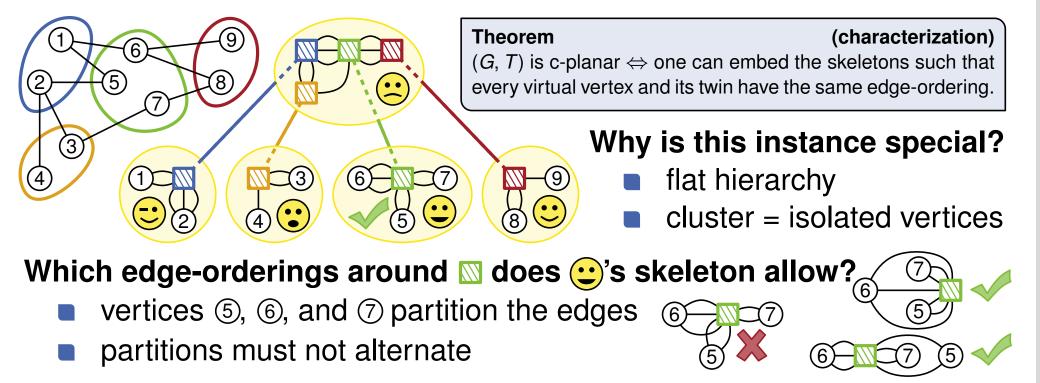
(characterization)

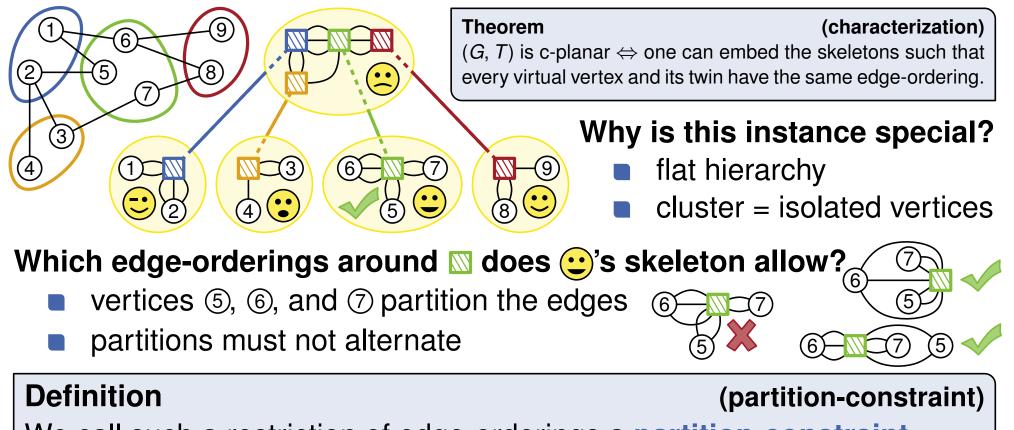
(G, T) is c-planar \Leftrightarrow one can embed the skeletons such that every virtual vertex and its twin have the same edge-ordering.

Why is this instance special?

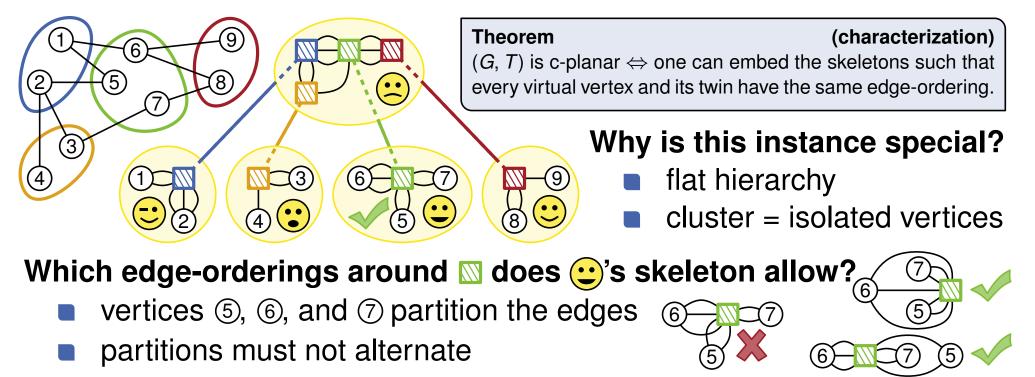
- flat hierarchy
- cluster = isolated vertices

Which edge-orderings around 🖾 does 🙂's skeleton allow?





We call such a restriction of edge-orderings a partition-constraint.



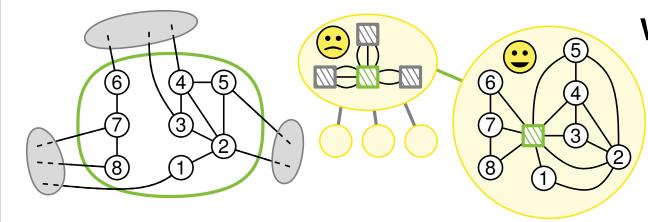
Definition

(partition-constraint)

We call such a restriction of edge-orderings a partition-constraint.

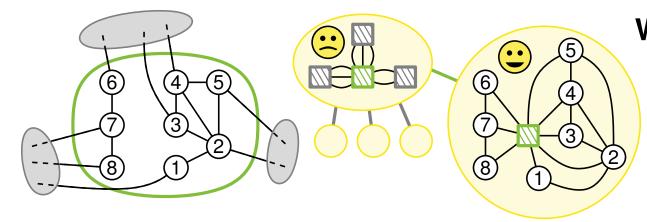
Theorem

C-planarity for flat-clustered graphs where every cluster is a set of isolated vertices is equivalent to **planarity with partition-constraints**.



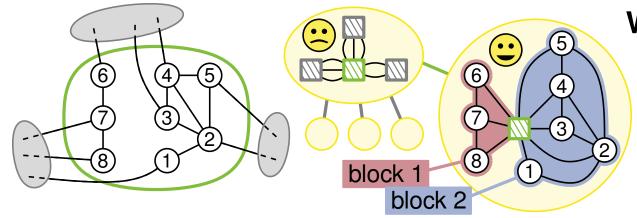
What is fixed? embedding of *G*

5 <u>Thomas Bläsius</u> · Ignaz Rutter – A New Perspective on C-Planarity as a Combinatorial Embedding Problem



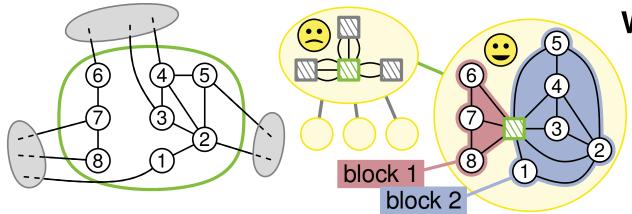
What is fixed?

- embedding of G
- edge-orderings of non-virtual vertices



What is fixed?

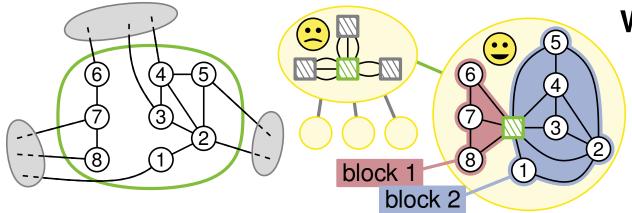
- embedding of G
- edge-orderings of non-virtual vertices
- embeddings of blocks



What is fixed?

- embedding of *G*
- edge-orderings of non-virtual vertices
- embeddings of blocks

Which edge-orderings around 🖾 does 🙂's skeleton allow?

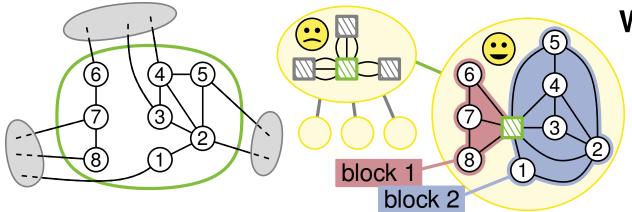


What is fixed?

- embedding of *G*
- edge-orderings of non-virtual vertices
- embeddings of blocks

Which edge-orderings around 🖾 does 🙂's skeleton allow?

blocks in 🙂's skeleton partition the edges



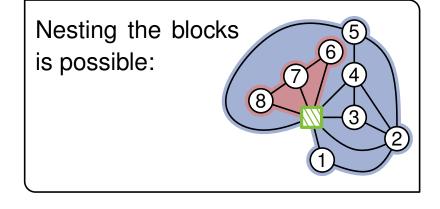
What is fixed?

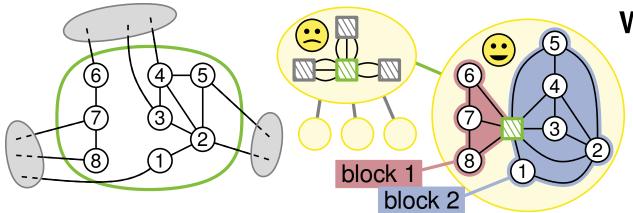
- embedding of *G*
- edge-orderings of non-virtual vertices
- embeddings of blocks

Which edge-orderings around 🖾 does 🙂's skeleton allow?

- blocks in 🙂's skeleton partition the edges
- partitions must not alternate

partition-constraint





What is fixed?

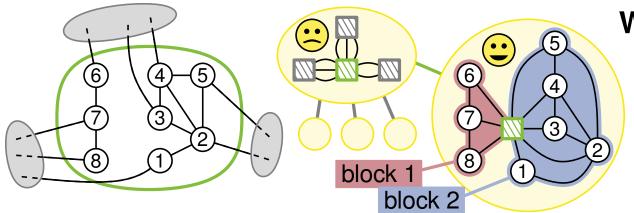
- embedding of *G*
- edge-orderings of non-virtual vertices
- embeddings of blocks

Which edge-orderings around 🖾 does 🙂's skeleton allow?

- blocks in 🙂's skeleton partition the edges
- partitions must not alternate
- order in each partition is fixed

partition-constraint full-constraint

Nesting the blocks is possible:



What is fixed?

- embedding of *G*
- edge-orderings of non-virtual vertices
- embeddings of blocks

partitioned full-constraint

partition-constraint

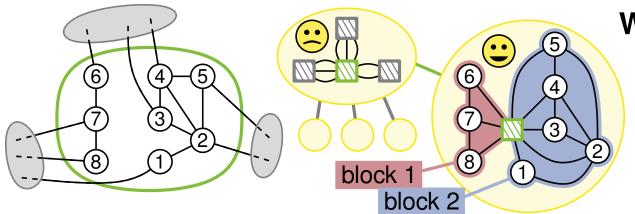
full-constraint

Which edge-orderings around 🖾 does 🙂's skeleton allow?

- blocks in 🙂's skeleton partition the edges
- partitions must not alternate
- order in each partition is fixed

Nesting the blocks is possible:

5



What is fixed?

- embedding of *G*
- edge-orderings of non-virtual vertices
- embeddings of blocks

Which edge-orderings around 🖾 does 🙂's skeleton allow?

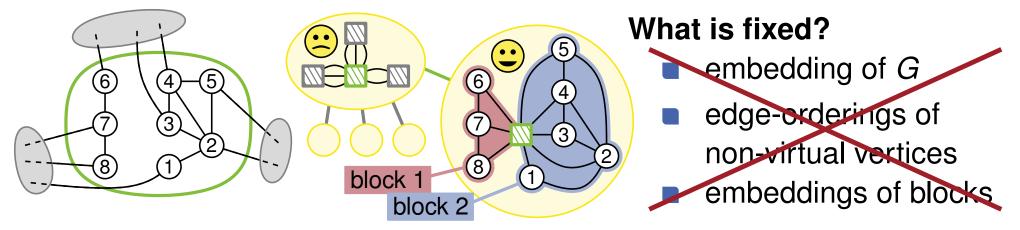
- blocks in 🙂's skeleton partition the edges
- partitions must not alternate
- order in each partition is fixed

partition-constraint full-constraint

partitioned full-constraint

Theorem

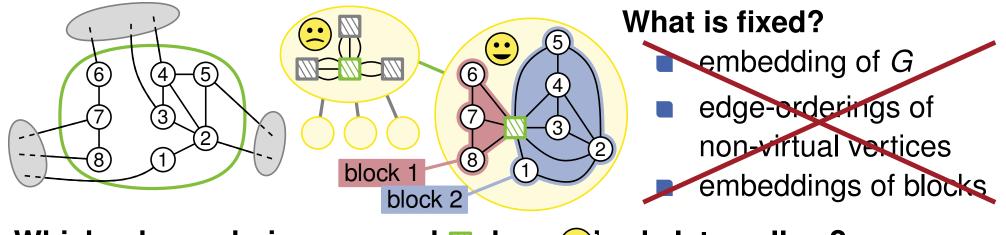
C-planarity for flat-clustered graphs with fixed planar embedding is equivalent to planarity with partitioned full-constraints.



Which edge-orderings around 🖾 does 🙂's skeleton allow?

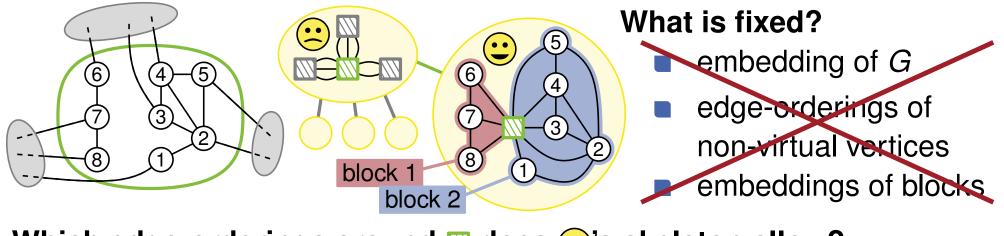
- blocks in 🙂's skeleton partition the edges
- partitions must not alternate
- order in each partition ??

- partition-constraint ??-constraint
- partitioned ??-constraint



Which edge-orderings around 🖾 does 🙂's skeleton allow?

- blocks in 🙂's skeleton partition the edges
- partitions must not alternate partition-constraint
 - order in each partition is restricted --> PQ-constraint
 by a PQ-tree partitioned PQ-constraint



Which edge-orderings around 🖾 does 🙂's skeleton allow?

- blocks in 🙂's skeleton partition the edges
- partitions must not alternate

partition-constraint PQ-constraint

partitioned PQ-constraint

Theorem

C-planarity for flat-clustered graphs is equivalent to planarity with partitioned PQ-constraints.

Theorem

flat

7

(flat-clustered graphs)

These variants of c-planarity and constrained embedding are equivalent:

flat, isolated vertices
 partition-constr.

partitioned PQ-constr.

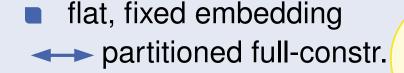
- flat, fixed embedding
- partitioned full-constr.

Theorem

(flat-clustered graphs)

These variants of c-planarity and constrained embedding are equivalent:

flat, isolated vertices
 partition-constr.



flat

🛶 partitioned PQ-constr. 🚽

graph class

constraints

multi-cycle

partition constraints partitions of size 2

[Cortese, Di Battista, Patrignani, Pizzonia 2005]

Theorem

solved

(flat-clustered graphs)

These variants of c-planarity and constrained embedding are equivalent:

flat, isolated vertices flat, fixed embedding partition-constr. partitioned full-constr. flat partitioned PQ-constr. constraints graph class multi-cycle g partition constraints [Cortese, Di Battista, variants partitions of size 2 Patrignani, Pizzonia 2005] fixed embedding (up to reordering multi-edges) partition constraints partitions of size 2 Cortese, Di Battista,

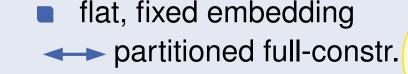
Patrignani, Pizzonia 2009]

Theorem

(flat-clustered graphs)

These variants of c-planarity and constrained embedding are equivalent:

flat, isolated vertices partition-constr.



partitioned PQ-constr.

graph class

constraints

multi-cycle g lants

fixed embedding (up to reordering multi-edges)

complicated restriction (not very strong)

partition constraints partitions of size 2

partition constraints partitions of size 2

partitioned-full constr. at most 3 partitions

Patrignani, Pizzonia 2005]

[Cortese, Di Battista, Patrignani, Pizzonia 2009]

[Cortese, Di Battista,

[Jelínková, Kára, Kratochvíl, Pergel, Suchý, Vyskočil 2009]

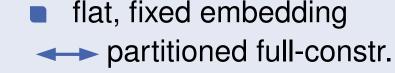
Vari

Theorem

(flat-clustered graphs)

These variants of c-planarity and constrained embedding are equivalent:

flat, isolated vertices
 partition-constr.



flat

🛶 partitioned PQ-constr. 🚽

constraints

fixed embedding (up to reordering mul

graph class

fixed embedding (up to reordering multi-edges)

complicated restriction (not very strong)

only two vertices 🚗

partition constraints partitions of size 2

partition constraints partitions of size 2

partitioned-full constr. at most 3 partitions

partitioned PQ-constraints

[Cortese, Di Battista, Patrignani, Pizzonia 2005]

[Cortese, Di Battista, Patrignani, Pizzonia 2009]

[Jelínková, Kára, Kratochvíl, Pergel, Suchý, Vyskočil 2009]

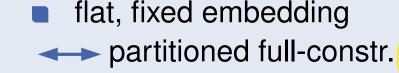
[Biedl, Kaufmann, Mutzel 1998] [Hong, Nagamochi 2014]

Theorem

(flat-clustered graphs)

These variants of c-planarity and constrained embedding are equivalent:

flat, isolated vertices
 partition-constr.



flat

var

N

🛶 partitioned PQ-constr. 🚽

constraints

multi-cycle

graph class

fixed embedding (up to reordering multi-edges)

complicated restriction (not very strong)

only two vertices 🚗

partition constraints partitions of size 2

partition constraints partitions of size 2

partitioned-full constr. at most 3 partitions

partitioned PQ-constraints

[Cortese, Di Battista, Patrignani, Pizzonia 2005]

[Cortese, Di Battista, Patrignani, Pizzonia 2009]

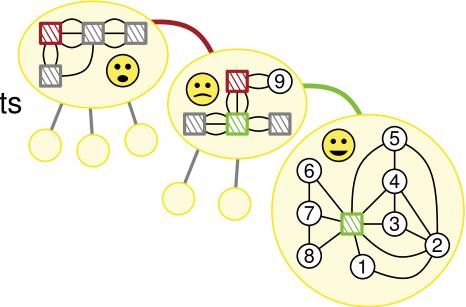
[Jelínková, Kára, Kratochvíl, Pergel, Suchý, Vyskočil 2009]

[Biedl, Kaufmann, Mutzel 1998] [Hong, Nagamochi 2014]

open problem: extend this table

Things become more complicated, when the clustering is not flat.

- lowest level: same constraints as in the flat-clustered case
- higher levels: complicated constraints



6

Things become more complicated, when the clustering is not flat.

- Iowest level: same constraints as in the flat-clustered case
- higher levels: complicated constraints

exception: every cluster is connected \Rightarrow PQ-constraints on every level [Lengauer 1989] [Feng, Cohen, Eades 1995]

•••

Things become more complicated, when the clustering is not flat.

- Iowest level: same constraints as in the flat-clustered case
- higher levels: complicated constraints

exception: every cluster is connected \Rightarrow PQ-constraints on every level [Lengauer 1989] [Feng, Cohen, Eades 1995]

Using the SIMULTANEOUS PQ-ORDERING machinery, we get:

Theorem

C-planarity can be solved efficiently if each virtual vertex in a skeleton of the cd-tree is incident to at most two non-trivial blocks.

Things become more complicated, when the clustering is not flat.

- Iowest level: same constraints as in the flat-clustered case
- higher levels: complicated constraints

exception: every cluster is connected \Rightarrow PQ-constraints on every level [Lengauer 1989] [Feng, Cohen, Eades 1995]

Using the SIMULTANEOUS PQ-ORDERING machinery, we get:

Theorem

C-planarity can be solved efficiently if each virtual vertex in a skeleton of the cd-tree is incident to at most two non-trivial blocks. This includes:

- clusters and co-clusters have at most 2 connected components
- clusters have at most 5 outgoing edges

6

6

Things become more complicated, when the clustering is not flat.

- Iowest level: same constraints as in the flat-clustered case
- higher levels: complicated constraints

exception: every cluster is connected \Rightarrow PQ-constraints on every level [Lengauer 1989] [Feng, Cohen, Eades 1995]

Using the SIMULTANEOUS PQ-ORDERING machinery, we get:

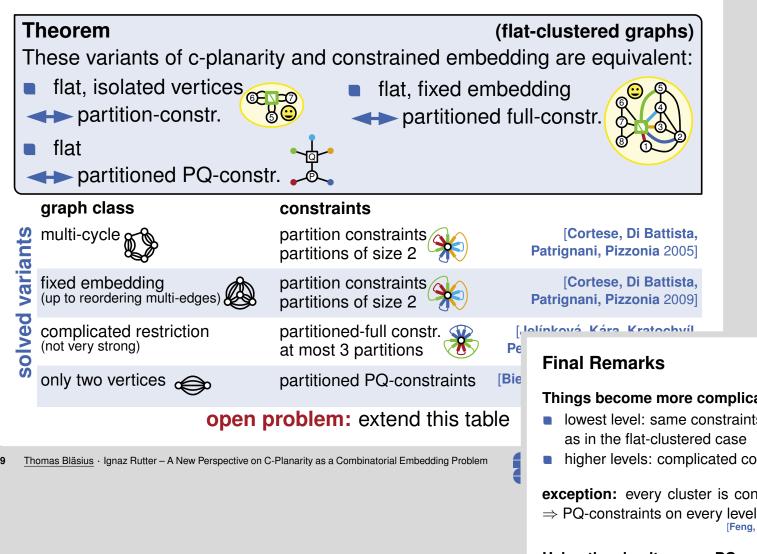
Theorem

C-planarity can be solved efficiently if each virtual vertex in a skeleton of the cd-tree is incident to at most two non-trivial blocks. This includes:

- clusters and co-clusters have at most 2 connected components
- clusters have at most 5 outgoing edges

formerly known for 4 instead of 5 [Jelínek, Suchý, Tesař, Vyskočil 2009]

•••



Questions?

Using the simultaneous PQ-ordering machinery, we get:

C-planarity can be solved efficiently if every virtual in the skeletons of the cd-tree is incident to at most two non-trivial blocks. This includes:

- clusters and co-clusters have at most 2 connected components
- clusters have at most 5 outgoing edges

formerly known for 4 instead of 5 Jelínek, Suchý, Tesař, Vyskočil 2009

Things become more complicated, when the clustering is not flat.

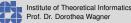
- lowest level: same constraints
- higher levels: complicated constraints

exception: every cluster is connected

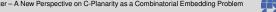
 \Rightarrow PQ-constraints on every level [Lengauer 1989] [Feng, Cohen, Eades 1995]

Theorem

10 Thomas Bläsius · Ignaz Rutter – A New Perspective on C-Planarity as a Combinatorial Embedding Problem

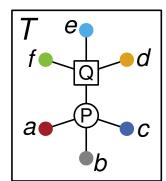


☺╓⊐⁰



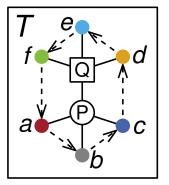
Every inner node in a PQ-tree is either a P-node or a Q-node.

- P-nodes: choose arbitrary edge-ordering
- Q-nodes: edge-ordering is fixed up to reversal



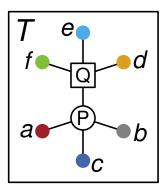
Every inner node in a PQ-tree is either a P-node or a Q-node.

- P-nodes: choose arbitrary edge-ordering
- Q-nodes: edge-ordering is fixed up to reversal



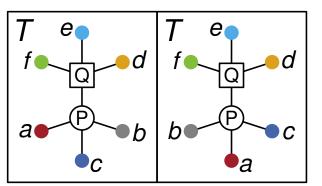
Every inner node in a PQ-tree is either a P-node or a Q-node.

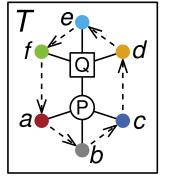
- P-nodes: choose arbitrary edge-ordering
- Q-nodes: edge-ordering is fixed up to reversal



Every inner node in a PQ-tree is either a P-node or a Q-node.

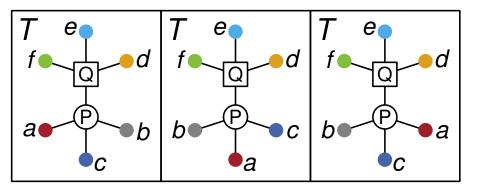
- P-nodes: choose arbitrary edge-ordering
- Q-nodes: edge-ordering is fixed up to reversal

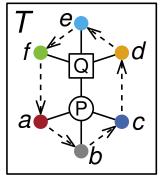




Every inner node in a PQ-tree is either a P-node or a Q-node.

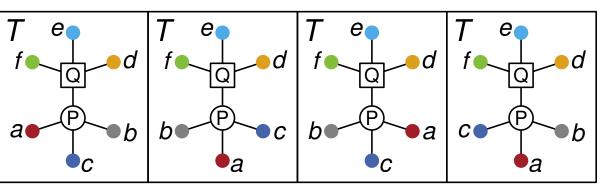
- P-nodes: choose arbitrary edge-ordering
- Q-nodes: edge-ordering is fixed up to reversal

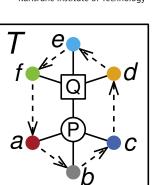




Every inner node in a PQ-tree is either a P-node or a Q-node.

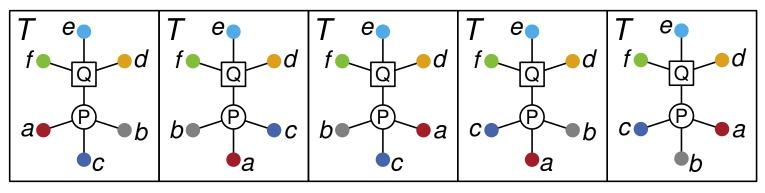
- P-nodes: choose arbitrary edge-ordering
- Q-nodes: edge-ordering is fixed up to reversal





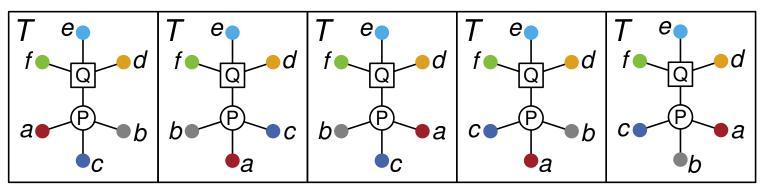
Every inner node in a PQ-tree is either a P-node or a Q-node.

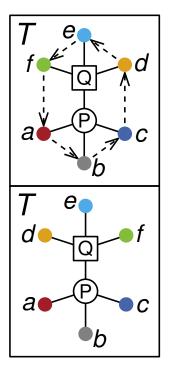
- P-nodes: choose arbitrary edge-ordering
- **Q-nodes:** edge-ordering is fixed up to reversal



Every inner node in a PQ-tree is either a P-node or a Q-node.

- P-nodes: choose arbitrary edge-ordering
- **Q-nodes:** edge-ordering is fixed up to reversal

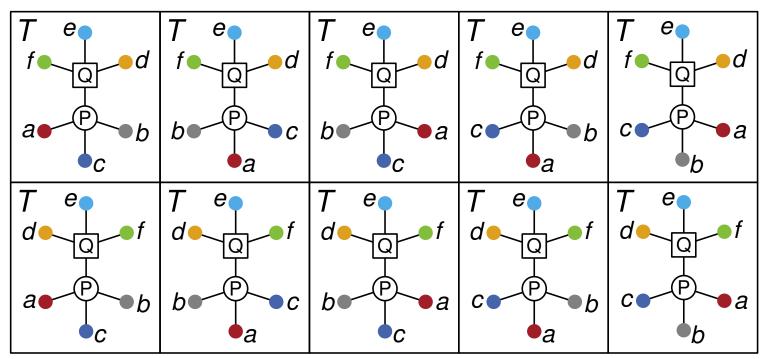


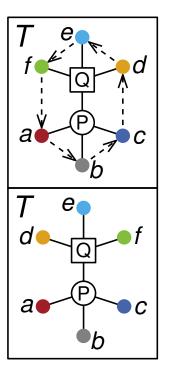


Karlsruhe Institute of Technology

Every inner node in a PQ-tree is either a P-node or a Q-node.

- P-nodes: choose arbitrary edge-ordering
- **Q-nodes:** edge-ordering is fixed up to reversal

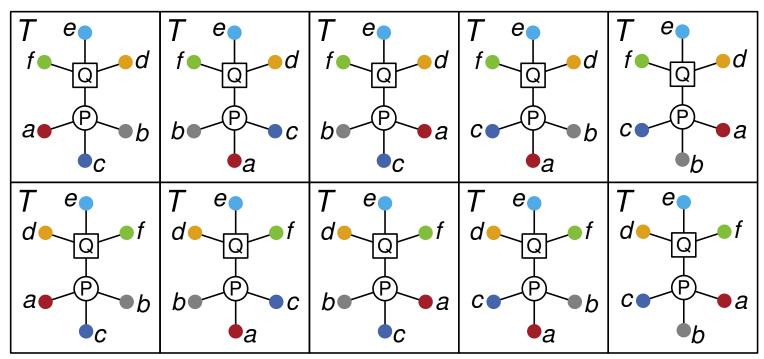


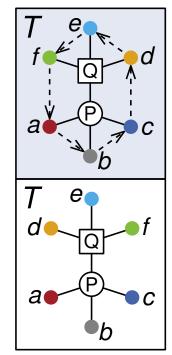


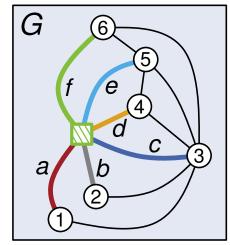
Karlsruhe Institute of Technology

Every inner node in a PQ-tree is either a P-node or a Q-node.

- P-nodes: choose arbitrary edge-ordering
- **Q-nodes:** edge-ordering is fixed up to reversal

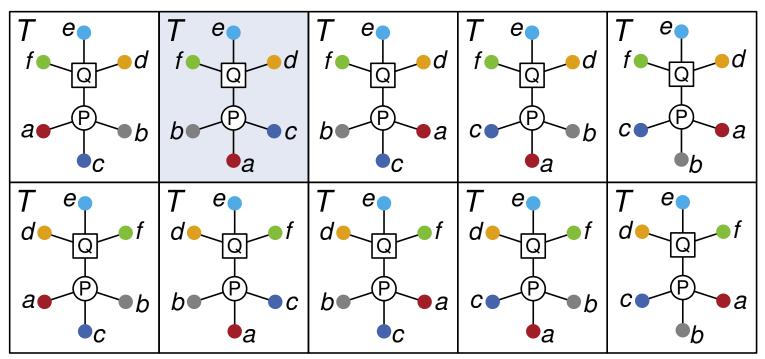


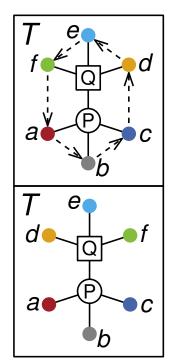


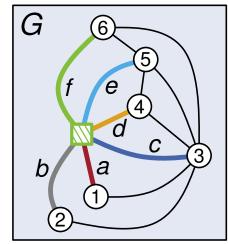


Every inner node in a PQ-tree is either a P-node or a Q-node.

- P-nodes: choose arbitrary edge-ordering
- **Q-nodes:** edge-ordering is fixed up to reversal

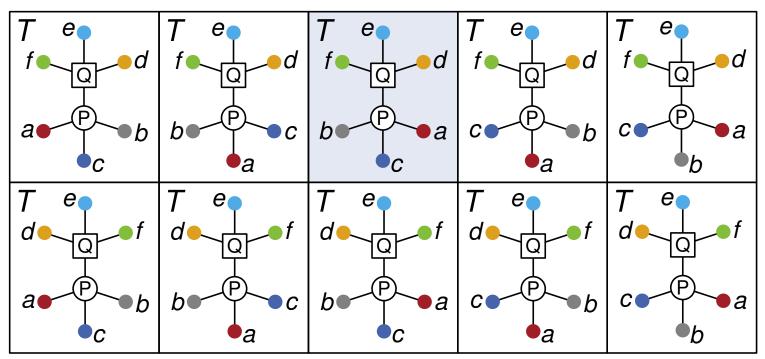


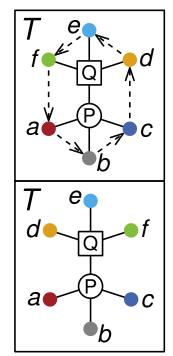


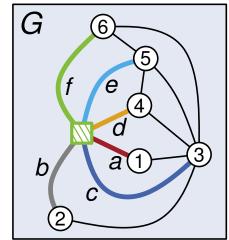


Every inner node in a PQ-tree is either a P-node or a Q-node.

- P-nodes: choose arbitrary edge-ordering
- **Q-nodes:** edge-ordering is fixed up to reversal

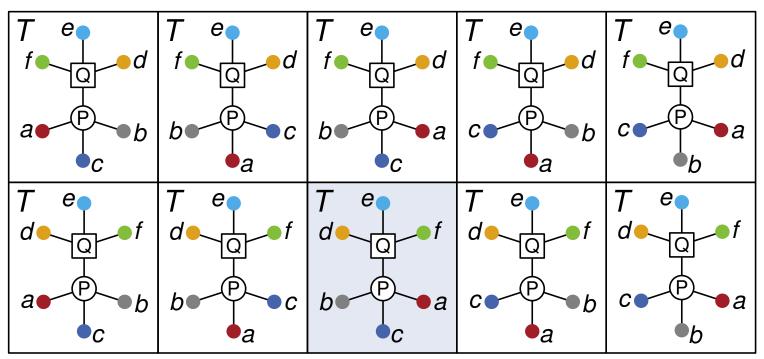


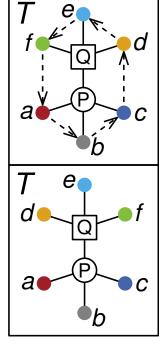


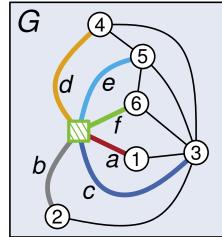


Every inner node in a PQ-tree is either a P-node or a Q-node.

- P-nodes: choose arbitrary edge-ordering
- **Q-nodes:** edge-ordering is fixed up to reversal



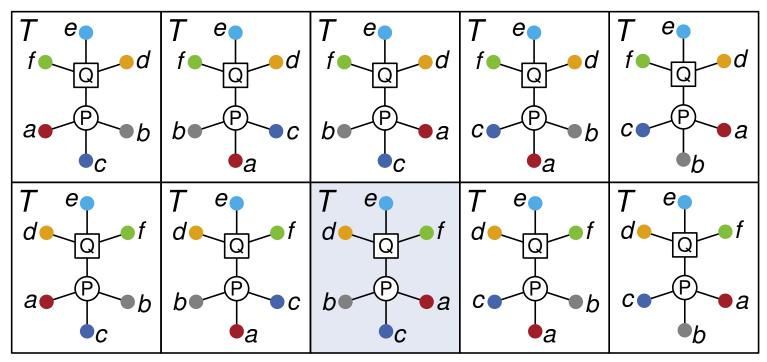


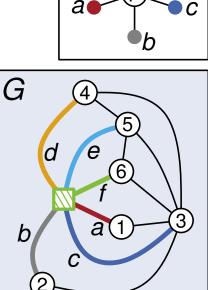


Every inner node in a PQ-tree is either a P-node or a Q-node.

- **P-nodes:** choose arbitrary edge-ordering
- **Q-nodes:** edge-ordering is fixed up to reversal

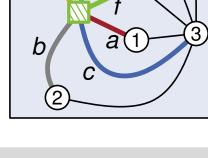
Every embedding induces a (cyclic) ordering on the leaves.

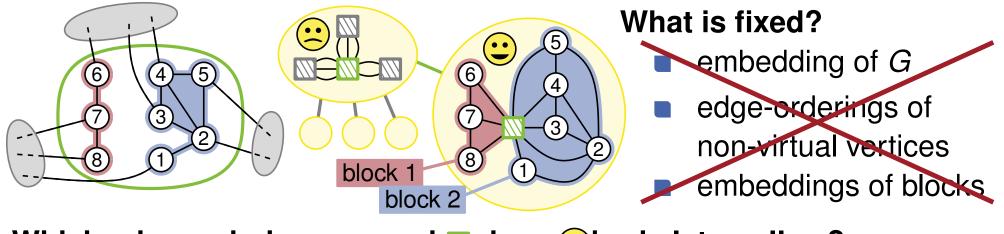




е

T represents the possible edge-orderings around \boxtimes in G.





Which edge-orderings around 🖾 does 🙂's skeleton allow?

- blocks in 🙂's skeleton partition the edges
- partitions must not alternate

partition-constraint PQ-constraint

partitioned PQ-constraint

Theorem

C-planarity for flat-clustered graphs is equivalent to planarity with partitioned PQ-constraints.

