MapSets: Visualizing Embedded and Clustered Graphs

Sergey Pupyrev
University of Arizona

$$
\begin{array}{ccc}
& 0 & 0 \\
& 0 & 0 \\
0 & & 0 \\
0 & 0 \\
0 & & 0 \\
0 & 0 & 0 \\
& 0 & 0
\end{array}
$$

Euler diagrams

[Simonetto Auber Archambault, CGF'09]

KelpFusion

 [Meulemans Riche Speckmann Alper Dwyer, TVCG'13]

GMap (Graph-to-Map) [Hu Gansner Kobourov, CGA'10]

a better solution

There is always a solution...

There is always a solution...

There is always a solution...

There is always a solution...

...but not all look the same!

...but not all look the same!

Main Question

How to construct disjoint contigous regions, that are as convex as possible?

...but not all look the same!

Main Question

How to construct disjoint contigous regions, that are as convex as possible?

Result

MapSets:

- available at http://gmap.cs.arizona.edu
- guarantees non-fragmented non-overlapping regions
- based on a novel geometric problem aiming at optimizing convexity

How to measure convexity?

How to measure convexity?

Def.(visibility-based): how many points "see" each other

How to measure convexity?

Def.(visibility-based): how many points "see" each other
Def.(ink-based): length of the shortest spanning tree inside the polygon

How to measure convexity?

Def.(visibility-based): how many points "see" each other
Def.(ink-based): length of the shortest spanning tree inside the polygon

How to measure convexity?

Def.(visibility-based): how many points "see" each other
Def.(ink-based): length of the shortest spanning tree inside the polygon

How to measure convexity?

Def.(visibility-based): how many points "see" each other
Def.(ink-based): length of the shortest spanning tree inside the polygon

How to measure convexity?

Def.(visibility-based): how many points "see" each other
Def.(ink-based): length of the shortest spanning tree inside the polygon

MapSets http://gmap.cs.arizona.edu

Input

MapSets
 http://gmap.cs.arizona.edu

Step 1: Tree Construction
(optimizing ink-based convexity)

MapSets http://gmap.cs.arizona.edu
Step 2: Force-directed Adjustment

MapSets
 http://gmap.cs.arizona.edu

Step 3: Edge Augmentation (optimizing visibility-based convexity)

MapSets http://gmap.cs.arizona.edu
Step 4: Adding Dummy Points
(borrowed from GMap)

MapSets
 http://gmap.cs.arizona.edu

Step 5: Computing Regions
(borrowed from GMap)

Examples

MapSets

BubbleSets

Dataset: genetic similarities between individuals in Europe 50 vertices, 7 clusters

Examples

MapSets
KelpFusion

Dataset: genetic similarities between individuals in Europe 50 vertices, 7 clusters

Examples

MapSets
GMap

Dataset: genetic similarities between individuals in Europe 50 vertices, 7 clusters

Examples

MapSets
w/o optimizing ink

Examples

MapSets
w/o optimizing ink

Colored (Euclidean) Spanning Trees

Input

k-colored point set in R^{2}

Colored (Euclidean) Spanning Trees

Input

k-colored point set in R^{2}

Output
k non-crossing Steiner trees

Colored (Euclidean) Spanning Trees

Input

Output

k-colored point set in R^{2}
k non-crossing Steiner trees

CST: Minimize total length!

Colored (Euclidean) Spanning Trees

Observation 1 CST is NP-hard

Colored (Euclidean) Spanning Trees

Observation 1 CST is NP-hard, even if $k=1$

Colored (Euclidean) Spanning Trees

Observation 1 CST is NP-hard, even if $k=1$

Observation 2 CST is NP-hard, even if

- Steiner points are not allowed
- every cluster consists of two points
[Bastert Fekete, TR'96]

Colored (Euclidean) Spanning Trees

Observation 1 CST is NP-hard, even if $k=1$

Observation 2 CST is NP-hard, even if

- Steiner points are not allowed
- every cluster consists of two points
[Bastert Fekete, TR'96]

Colored (Euclidean) Spanning Trees

Observation 1 CST is NP-hard, even if $k=1$

Observation 2 CST is NP-hard, even if

- Steiner points are not allowed
- every cluster consists of two points
[Bastert Fekete, TR'96]
Observation 3 CST (with $k=n / 2$) is equivalent to Min. Length Embedding of Matchings at Fixed Vertex Locations

Colored (Euclidean) Spanning Trees

Observation 1 CST is NP-hard, even if $k=1$

Observation 2 CST is NP-hard, even if

- Steiner points are not allowed
- every cluster consists of two points
[Bastert Fekete, TR'96]
Observation 3 CST (with $k=n / 2$) is equivalent to Min. Length Embedding of Matchings at Fixed Vertex Locations [Chan Hoffmann Kiazyk Lubiw, GD'13]

Theorem CST (with $k=n / 2)$ admits an $O(\sqrt{k} \log k)$-approximation (Chan et al.)

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

$$
\begin{aligned}
& 1.15<\rho<1.22 \\
& \text { Steiner ratioo that is, } \\
& \text { inf }\left\{\frac{\mid \text { Steiner Tree } \mid}{\text { Spanning Tree } \mid}\right\}
\end{aligned}
$$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a $(k \rho)$-approximation
Proof Algorithm $(k=2)$:

Analysis:

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a $(k \rho)$-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees

Analysis:

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a $(k \rho)$-approximation
Proof Algorithm $(k=2)$:

- construct red and blue minimum spanning trees
- take the shorter one

Analysis:

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a $(k \rho)$-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color

Analysis:

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a $(k \rho)$-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a $(k \rho)$-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings and cycles

Analysis:

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a $(k \rho)$-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings and cycles, shortcut Analysis:

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings and cycles, shortcut

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a $(k \rho)$-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings and cycles, shortcut

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
$\mathrm{OPT}_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a $(k \rho)$-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings and cycles, shortcut

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
OPT $_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, A L G_{R}$ be the resulting trees

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
OPT $_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, \mathrm{ALG}_{R}$ be the resulting trees Before removing cycles/shortcutting $\mathrm{ALG}_{B}=\left|\mathrm{MST}_{B}\right|$
$\mathrm{ALG}_{R}=\left|\mathrm{MST}_{R}\right|+2\left|\mathrm{MST}_{B}\right|$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
OPT $_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, \mathrm{ALG}_{R}$ be the resulting trees Before removing cycles/shortcutting $\mathrm{ALG}_{B}=\left|\mathrm{MST}_{B}\right|$
$\mathrm{ALG}_{R}=\left|\mathrm{MST}_{R}\right|+2\left|\mathrm{MST}_{B}\right|$
$\frac{\mathrm{ALG}}{\mathrm{OPT}} \leq \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\mid \text { Steiner Tree }}$ 早+|Steiner Tree ${ }_{B} \mid$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
OPT $_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, \mathrm{ALG}_{R}$ be the resulting trees Before removing cycles/shortcutting $\mathrm{ALG}_{B}=\left|\mathrm{MST}_{B}\right|$
$\mathrm{ALG}_{R}=\left|\mathrm{MST}_{R}\right|+2\left|\mathrm{MST}_{B}\right|$
$\frac{\mathrm{ALG}}{\mathrm{OPT}} \leq \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\mid \text { Steiner Tree }}{ }_{R}|+|$ Steiner Tree ${ }_{B} \left\lvert\, \leq \rho \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\left|\mathrm{MST}_{R}\right|+\left|\mathrm{MST}_{B}\right|}\right.$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
OPT $_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, \mathrm{ALG}_{R}$ be the resulting trees Before removing cycles/shortcutting $\mathrm{ALG}_{B}=\left|\mathrm{MST}_{B}\right|$
$\mathrm{ALG}_{R}=\left|\mathrm{MST}_{R}\right|+2\left|\mathrm{MST}_{B}\right|$
$\left.\frac{\mathrm{ALG}}{\mathrm{OPT}} \leq \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\mid \text { Steiner Tree }{ }_{R}|+| \text { Steiner Tree }}{ }_{B} \right\rvert\, \leq \rho \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\left|\mathrm{MST}_{R}\right|+\left|\mathrm{MST}_{B}\right|} \leq \rho \cdot 2$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
$\mathrm{OPT}_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, \mathrm{ALG}_{R}$ be the resulting trees

Before removing cycles/shortcutting
$\mathrm{ALG}_{B}=\left|\mathrm{MST}_{B}\right|$
$\mathrm{ALG}_{R}=\left|\mathrm{MST}_{R}\right|+2\left|\mathrm{MST}_{B}\right|$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
OPT $_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, \mathrm{ALG}_{R}$ be the resulting trees Before removing cycles/shortcutting $\mathrm{ALG}_{B}=\left|\mathrm{MST}_{B}\right|$
$\mathrm{ALG}_{R}=\left|\mathrm{MST}_{R}\right|+2\left|\mathrm{MST}_{B}\right|$
$\left.\frac{\mathrm{ALG}}{\mathrm{OPT}} \leq \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\mid \text { Steiner Tree }{ }_{R}|+| \text { Steiner Tree }}{ }_{B} \right\rvert\, \leq \rho \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\left|\mathrm{MST}_{R}\right|+\left|\mathrm{MST}_{B}\right|} \leq \rho \cdot 2$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation

Proof Algorithm ($k=2$):

- construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
$\mathrm{OPT}_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, \mathrm{ALG}_{R}$ be the resulting trees Before removing cycles/shortcutting $\mathrm{ALG}_{B}=\left|\mathrm{MST}_{B}\right|$
$\mathrm{ALG}_{R}=\left|\mathrm{MST}_{R}\right|+2\left|\mathrm{MST}_{B}\right|$

$\frac{\mathrm{ALG}}{\mathrm{OPT}} \leq \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\mid \text { Steiner Tree }}{ }_{R}|+|$ Steiner Tree $B \left\lvert\,-\rho \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\left|\mathrm{MST}_{R}\right|+\left|\mathrm{MST}_{B}\right|} \leq \rho \cdot 2\right.$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a ($k \rho$)-approximation
Proof Algorithm $(k=2):(1+\varepsilon)$-approx. Steiner

- construct red and blue minimum spaming trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
$\mathrm{OPT}_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, \mathrm{ALG}_{R}$ be the resulting trees Before removing cycles/shortcutting $\mathrm{ALG}_{B}=\left|\mathrm{MST}_{B}\right|$
$\mathrm{ALG}_{R}=\left|\mathrm{MST}_{R}\right|+2\left|\mathrm{MST}_{B}\right|$

$\frac{\mathrm{ALG}}{\mathrm{OPT}} \leq \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\mid \text { Steiner Tree }}{ }_{R}|+|$ Steiner Tree $B \left\lvert\,-\rho \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\left|\mathrm{MST}_{R}\right|+\left|\mathrm{MST}_{B}\right|} \leq \rho \cdot 2\right.$

Colored (Euclidean) Spanning Trees

Theorem CST (with k colors) admits a (k) -approximation
Proof Algorithm $(k=2):(1+\varepsilon)$-approx. Steiner

- construct red and blue minimum sparing trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

- let $\mathrm{OPT}_{B}, \mathrm{OPT}_{R}$ be optimal non-crossing trees Since the trees connect points
$\mathrm{OPT}_{B} \geq \mid$ Steiner Tree ${ }_{B} \mid$
$\mathrm{OPT}_{R} \geq \mid$ Steiner Tree ${ }_{R} \mid$
- let $\mathrm{ALG}_{B}, \mathrm{ALG}_{R}$ be the resulting trees Before removing cycles/shortcutting $\mathrm{ALG}_{B}=\left|\mathrm{MST}_{B}\right|$
$\mathrm{ALG}_{R}=\left|\mathrm{MST}_{R}\right|+2\left|\mathrm{MST}_{B}\right|$

$\frac{\mathrm{ALG}}{\mathrm{OPT}} \leq \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\mid \text { Steiner Tree }}{ }_{R}|+|$ Steiner Tree $B \left\lvert\,-\rho \frac{\left|\mathrm{MST}_{R}\right|+3\left|\mathrm{MST}_{B}\right|}{\left|\mathrm{MST}_{R}\right|+\left|\mathrm{MST}_{B}\right|} \leq \rho \cdot 2\right.$

Conclusions

O new visualization method MapSets demo is at http://gmap.cs.arizona.edu source code is at GitHub ($\mathrm{C}++$, javascript)

Conclusions

O new visualization method MapSets demo is at http://gmap.cs.arizona.edu source code is at GitHub (C++, javascript)

- new geometric problem CST
$(k+\varepsilon)$-approximation

Conclusions

O new visualization method MapSets
demo is at http://gmap.cs.arizona.edu
source code is at GitHub ($\mathrm{C}++$, javascript)

- new geometric problem CST
$(k+\varepsilon)$-approximation

What is next?

- quantitative/qualitative evaluation of the different methods
- visualizing graphs rather than sets
- improve approximation factors for CST

Conclusions

O new visualization method MapSets
demo is at http://gmap.cs.arizona.edu
source code is at GitHub ($\mathrm{C}++$, javascript)

- new geometric problem CST
$(k+\varepsilon)$-approximation

What is next?

- quantitative/qualitative evaluation of the different methods
- visualizing graphs rather than sets
- improve approximation factors for CST
Thank you!

