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Euler diagrams [Simonetto Auber Archambault, CGF’09]



BubbleSets [Collins Penn Carpendale, TVCG’09]



LineSets [Alper Riche Ramos Czerwinski, TVCG’11]



KelpFusion [Meulemans Riche Speckmann Alper Dwyer, TVCG’13]



GMap (Graph-to-Map) [Hu Gansner Kobourov, CGA’10]
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...but not all look the same!

MapSets – such a technique, available at

How to construct disjoint contigous regions, that
are as convex as possible?

Main Question

Result
MapSets:
– available at http://gmap.cs.arizona.edu
– guarantees non-fragmented non-overlapping regions
– based on a novel geometric problem aiming at
optimizing convexity
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Step 1: Tree Construction
(optimizing ink-based convexity)
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Step 2: Force-directed Adjustment
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Step 3: Edge Augmentation
(optimizing visibility-based convexity)
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Step 4: Adding Dummy Points
(borrowed from GMap)
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Step 5: Computing Regions
(borrowed from GMap)



Examples

MapSets

Dataset: genetic similarities between individuals in Europe
50 vertices, 7 clusters
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MapSets

Dataset: genetic similarities between individuals in Europe
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MapSets w/o optimizing ink



Examples

MapSets w/o optimizing ink

ink = 1023 ink = 1512



Colored (Euclidean) Spanning T rees

Input
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Colored (Euclidean) Spanning T rees

Input

k-colored point set in R2

Output

k non-crossing Steiner trees

CST: Minimize total length!
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Colored (Euclidean) Spanning T rees

Observation 1 CST is NP-hard

Observation 3 CST (with k = n/2) is equivalent to

, even if k = 1

Observation 2 CST is NP-hard, even if
– Steiner points are not allowed
– every cluster consists of two points

Min. Length Embedding of Matchings at Fixed Vertex Locations
[Chan Hoffmann Kiazyk Lubiw, GD’13]

[Bastert Fekete, TR’96]

Theorem
(Chan et al.)

CST (with k = n/2) admits an O(
√
k log k)-approximation
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Theorem CST (with k colors) admits a (kρ)-approximation

1.15 < ρ < 1.22
Steiner ratio, that is,
inf { |Steiner Tree|

|Spanning Tree|}



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof Algorithm (k = 2):

Analysis:



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees

Algorithm (k = 2):

Analysis:



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one

Algorithm (k = 2):

Analysis:



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color

Algorithm (k = 2):

Analysis:



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles

Algorithm (k = 2):

Analysis:



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles , shortcut

Algorithm (k = 2):

Analysis:



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles , shortcut

Algorithm (k = 2):

Analysis:



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles , shortcut

Algorithm (k = 2):

Analysis:



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles , shortcut

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB |



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB |



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB | ≤ ρ · 2



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB | ≤ ρ · 2



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB | ≤ ρ · 2



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB | ≤ ρ · 2



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB |

(1 + ε)-approx. Steiner

≤ ρ · 2



Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB |

(1 + ε)-approx. Steiner

(k + ε)

≤ ρ · 2



Conclusions

new visualization method MapSets

demo is at http://gmap.cs.arizona.edu

source code is at GitHub (C++, javascript)



Conclusions

new visualization method MapSets

demo is at http://gmap.cs.arizona.edu

new geometric problem CST

source code is at GitHub (C++, javascript)

(k + ε)-approximation



Conclusions

What is next?

quantitative/qualitative evaluation of the different methods

improve approximation factors for CST

visualizing graphs rather than sets

new visualization method MapSets

demo is at http://gmap.cs.arizona.edu

new geometric problem CST

source code is at GitHub (C++, javascript)

(k + ε)-approximation



Conclusions

What is next?

quantitative/qualitative evaluation of the different methods

improve approximation factors for CST

Thank you!

visualizing graphs rather than sets

new visualization method MapSets

demo is at http://gmap.cs.arizona.edu

new geometric problem CST

source code is at GitHub (C++, javascript)

(k + ε)-approximation


