
MapSets: Visualizing Embedded
and Clustered Graphs

Sergey Pupyrev
University of Arizona

Joint work with Alon Efrat, Yifan Hu and Stephen Kobourov

Euler diagrams [Simonetto Auber Archambault, CGF’09]

BubbleSets [Collins Penn Carpendale, TVCG’09]

LineSets [Alper Riche Ramos Czerwinski, TVCG’11]

KelpFusion [Meulemans Riche Speckmann Alper Dwyer, TVCG’13]

GMap (Graph-to-Map) [Hu Gansner Kobourov, CGA’10]

a better solution

a better solution

all regions are
contiguous and
disjoint

There is always a solution...

There is always a solution...

There is always a solution...

There is always a solution...

...but not all look the same!

...but not all look the same!

How to construct disjoint contigous regions, that
are as convex as possible?

Main Question

...but not all look the same!

MapSets – such a technique, available at

How to construct disjoint contigous regions, that
are as convex as possible?

Main Question

Result
MapSets:
– available at http://gmap.cs.arizona.edu
– guarantees non-fragmented non-overlapping regions
– based on a novel geometric problem aiming at
optimizing convexity

How to measure convexity?

How to measure convexity?

how many points “see” each otherDef.(visibility-based):

How to measure convexity?

how many points “see” each otherDef.(visibility-based):

Def.(ink-based): length of the shortest spanning tree inside
the polygon

How to measure convexity?

how many points “see” each otherDef.(visibility-based):

Def.(ink-based): length of the shortest spanning tree inside
the polygon

How to measure convexity?

how many points “see” each otherDef.(visibility-based):

Def.(ink-based): length of the shortest spanning tree inside
the polygon

How to measure convexity?

how many points “see” each otherDef.(visibility-based):

Def.(ink-based): length of the shortest spanning tree inside
the polygon

How to measure convexity?

how many points “see” each otherDef.(visibility-based):

Def.(ink-based): length of the shortest spanning tree inside
the polygon

MapSets http://gmap.cs.arizona.edu

Input

MapSets http://gmap.cs.arizona.edu

Step 1: Tree Construction
(optimizing ink-based convexity)

MapSets http://gmap.cs.arizona.edu

Step 2: Force-directed Adjustment

MapSets http://gmap.cs.arizona.edu

Step 3: Edge Augmentation
(optimizing visibility-based convexity)

MapSets http://gmap.cs.arizona.edu

Step 4: Adding Dummy Points
(borrowed from GMap)

MapSets http://gmap.cs.arizona.edu

Step 5: Computing Regions
(borrowed from GMap)

Examples

MapSets

Dataset: genetic similarities between individuals in Europe
50 vertices, 7 clusters

BubbleSets

Examples

MapSets

Dataset: genetic similarities between individuals in Europe
50 vertices, 7 clusters

KelpFusion

Examples

MapSets

Dataset: genetic similarities between individuals in Europe
50 vertices, 7 clusters

GMap

Examples

MapSets w/o optimizing ink

Examples

MapSets w/o optimizing ink

ink = 1023 ink = 1512

Colored (Euclidean) Spanning T rees

Input

k-colored point set in R2

Colored (Euclidean) Spanning T rees

Input

k-colored point set in R2

Output

k non-crossing Steiner trees

Colored (Euclidean) Spanning T rees

Input

k-colored point set in R2

Output

k non-crossing Steiner trees

CST: Minimize total length!

Colored (Euclidean) Spanning T rees

Observation 1 CST is NP-hard

Colored (Euclidean) Spanning T rees

Observation 1 CST is NP-hard, even if k = 1

Colored (Euclidean) Spanning T rees

Observation 1 CST is NP-hard, even if k = 1

Observation 2 CST is NP-hard, even if
– Steiner points are not allowed
– every cluster consists of two points [Bastert Fekete, TR’96]

Colored (Euclidean) Spanning T rees

Observation 1 CST is NP-hard, even if k = 1

Observation 2 CST is NP-hard, even if
– Steiner points are not allowed
– every cluster consists of two points [Bastert Fekete, TR’96]

Colored (Euclidean) Spanning T rees

Observation 1 CST is NP-hard

Observation 3 CST (with k = n/2) is equivalent to

, even if k = 1

Observation 2 CST is NP-hard, even if
– Steiner points are not allowed
– every cluster consists of two points

Min. Length Embedding of Matchings at Fixed Vertex Locations
[Chan Hoffmann Kiazyk Lubiw, GD’13]

[Bastert Fekete, TR’96]

Colored (Euclidean) Spanning T rees

Observation 1 CST is NP-hard

Observation 3 CST (with k = n/2) is equivalent to

, even if k = 1

Observation 2 CST is NP-hard, even if
– Steiner points are not allowed
– every cluster consists of two points

Min. Length Embedding of Matchings at Fixed Vertex Locations
[Chan Hoffmann Kiazyk Lubiw, GD’13]

[Bastert Fekete, TR’96]

Theorem
(Chan et al.)

CST (with k = n/2) admits an O(
√
k log k)-approximation

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

1.15 < ρ < 1.22
Steiner ratio, that is,
inf { |Steiner Tree|

|Spanning Tree|}

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof Algorithm (k = 2):

Analysis:

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees

Algorithm (k = 2):

Analysis:

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one

Algorithm (k = 2):

Analysis:

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color

Algorithm (k = 2):

Analysis:

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles

Algorithm (k = 2):

Analysis:

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof
– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles , shortcut

Algorithm (k = 2):

Analysis:

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles , shortcut

Algorithm (k = 2):

Analysis:

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles , shortcut

Algorithm (k = 2):

Analysis:

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings and cycles , shortcut

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB |

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB |

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB | ≤ ρ · 2

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB | ≤ ρ · 2

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB | ≤ ρ · 2

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB | ≤ ρ · 2

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB |

(1 + ε)-approx. Steiner

≤ ρ · 2

Colored (Euclidean) Spanning T rees

Theorem CST (with k colors) admits a (kρ)-approximation

Proof

– let OPTB , OPTR be optimal non-crossing trees
Since the trees connect points
OPTB ≥ |Steiner TreeB |
OPTR ≥ |Steiner TreeR |

– construct red and blue minimum spanning trees
– take the shorter one , add a “shell” around it of another color
– remove crossings

Algorithm (k = 2):

Analysis:

– let ALGB , ALGR be the resulting trees
Before removing cycles/shortcutting
ALGB = |MSTB |
ALGR = |MSTR |+ 2|MSTB |

ALG
OPT
≤ | MSTR |+3| MSTB |

|Steiner TreeR |+|Steiner TreeB | ≤ ρ
| MSTR |+3| MSTB |
| MSTR |+| MSTB |

(1 + ε)-approx. Steiner

(k + ε)

≤ ρ · 2

Conclusions

new visualization method MapSets

demo is at http://gmap.cs.arizona.edu

source code is at GitHub (C++, javascript)

Conclusions

new visualization method MapSets

demo is at http://gmap.cs.arizona.edu

new geometric problem CST

source code is at GitHub (C++, javascript)

(k + ε)-approximation

Conclusions

What is next?

quantitative/qualitative evaluation of the different methods

improve approximation factors for CST

visualizing graphs rather than sets

new visualization method MapSets

demo is at http://gmap.cs.arizona.edu

new geometric problem CST

source code is at GitHub (C++, javascript)

(k + ε)-approximation

Conclusions

What is next?

quantitative/qualitative evaluation of the different methods

improve approximation factors for CST

Thank you!

visualizing graphs rather than sets

new visualization method MapSets

demo is at http://gmap.cs.arizona.edu

new geometric problem CST

source code is at GitHub (C++, javascript)

(k + ε)-approximation

