MapSets: Visualizing Embedded and Clustered Graphs

Sergey Pupyrev University of Arizona

Joint work with Alon Efrat, Yifan Hu and Stephen Kobourov

...but not all look the same!

...but not all look the same!

Main Question

How to construct *disjoint contigous* regions, that are as *convex* as possible?

...but not all look the same!

Main Question

How to construct *disjoint contigous* regions, that are as *convex* as possible?

Result

MapSets:

- available at http://gmap.cs.arizona.edu
- guarantees non-fragmented non-overlapping regions
- based on a novel geometric problem aiming at optimizing convexity

Def.(visibility-based): how many points "see" each other

Input

Step 1: Tree Construction (optimizing ink-based convexity)

Step 2: Force-directed Adjustment

Step 3: Edge Augmentation (optimizing visibility-based convexity)

Step 5: Computing Regions

(borrowed from GMap)

MapSets

BubbleSets

Dataset: genetic similarities between individuals in Europe 50 vertices, 7 clusters

MapSets

Dataset: genetic similarities between individuals in Europe 50 vertices, 7 clusters

MapSets

Dataset: genetic similarities between individuals in Europe 50 vertices, 7 clusters

Examples

Examples

Input

k-colored point set in R^2

Input

Output

k-colored point set in R^2

k non-crossing Steiner trees

Input

Output

k-colored point set in R^2 k non-crossing Steiner trees

CST: Minimize total length!

Observation 1 CST is NP-hard

Observation 1 CST is NP-hard, even if k = 1

Observation 1 CST is NP-hard, even if k = 1

Observation 2 CST is NP-hard, even if

- Steiner points are not allowed
- every cluster consists of two points

[Bastert Fekete, TR'96]

Observation 1 CST is NP-hard, even if k = 1

Observation 2 CST is NP-hard, even if

- Steiner points are not allowed
- every cluster consists of two points

[Bastert Fekete, TR'96]

Observation 1 CST is NP-hard, even if k = 1

Observation 2 CST is NP-hard, even if

- Steiner points are not allowed
- every cluster consists of two points

[Bastert Fekete, TR'96]

Observation 3 CST (with k = n/2) is equivalent to MIN. LENGTH EMBEDDING OF *Matchings* AT FIXED VERTEX LOCATIONS [Chan Hoffmann Kiazyk Lubiw, GD'13]

Observation 1 CST is NP-hard, even if k = 1

Observation 2 CST is NP-hard, even if

- Steiner points are not allowed
- every cluster consists of two points

[Bastert Fekete, TR'96]

Observation 3 CST (with k = n/2) is equivalent to MIN. LENGTH EMBEDDING OF *Matchings* AT FIXED VERTEX LOCATIONS [Chan Hoffmann Kiazyk Lubiw, GD'13]

Theorem CST (with k = n/2) admits an $O(\sqrt{k} \log k)$ -approximation (Chan et al.)

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Proof Algorithm (k = 2):

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Proof Algorithm (k = 2): – construct red and blue minimum spanning trees

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Proof Algorithm (k = 2):

- construct red and blue minimum spanning trees
- take the shorter one

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Proof Algorithm (k = 2):

- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Proof Algorithm (k = 2):

- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Proof Algorithm (k = 2):

- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings and cycles

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Proof Algorithm (k = 2):

- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings and cycles, shortcut

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Proof Algorithm (k = 2):

- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings and cycles, shortcut
- Analysis:
- let OPT_B , OPT_R be optimal non-crossing trees

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

Proof Algorithm (k = 2):

- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings and cycles, shortcut

Analysis:

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

 $OPT_B \ge |Steiner Tree_B|$

 $OPT_R \ge |Steiner Tree_R|$

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

- **Proof** Algorithm (k = 2):
- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings and cycles, shortcut

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points
- $\mathsf{OPT}_B \geq |\mathsf{Steiner Tree}_B|$
- $\mathsf{OPT}_R \ge |\mathsf{Steiner} \mathsf{Tree}_R|$
- let ALG_B , ALG_R be the resulting trees

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

- **Proof** Algorithm (k = 2):
- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings

Analysis:

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

 $\mathsf{OPT}_B \ge |\mathsf{Steiner Tree}_B|$

 $\mathsf{OPT}_R \ge |\mathsf{Steiner } \mathsf{Tree}_R|$

- let ALG_B , ALG_R be the resulting trees

Before removing cycles/shortcutting

- $ALG_B = |MST_B|$
- $ALG_R = |MST_R| + 2|MST_B|$

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

- **Proof** Algorithm (k = 2):
- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings

Analysis:

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

 $\mathsf{OPT}_B \ge |\mathsf{Steiner} \; \mathsf{Tree}_B|$

 $\mathsf{OPT}_R \ge |\mathsf{Steiner Tree}_R|$

- let ALG_B , ALG_R be the resulting trees Before removing cycles/shortcutting

 $ALG_B = |MST_B|$

 $ALG_R = |MST_R| + 2|MST_B|$

 $\frac{\mathrm{ALG}}{\mathrm{OPT}} \leq \frac{\mid \mathrm{MST}_R \mid + 3 \mid \mathrm{MST}_B \mid}{\mid \mathrm{Steiner \ Tree}_R \mid + \mid \mathrm{Steiner \ Tree}_B \mid}$

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

- **Proof** Algorithm (k = 2):
- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings

Analysis:

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

$$\mathsf{OPT}_B \ge |\mathsf{Steiner} \mathsf{Tree}_B|$$

 $\mathsf{OPT}_R \ge |\mathsf{Steiner Tree}_R|$

- let ALG_B , ALG_R be the resulting trees

Before removing cycles/shortcutting $ALG_B = |MST_B|$

$$\frac{\mathsf{ALG}}{\mathsf{OPT}} \leq \frac{|\operatorname{\mathsf{MST}}_R| + 3|\operatorname{\mathsf{MST}}_B|}{|\operatorname{\mathsf{Steiner Tree}}_R| + |\operatorname{\mathsf{Steiner Tree}}_B|} \leq \rho \frac{|\operatorname{\mathsf{MST}}_R| + 3|\operatorname{\mathsf{MST}}_B|}{|\operatorname{\mathsf{MST}}_R| + |\operatorname{\mathsf{MST}}_B|}$$

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

- **Proof** Algorithm (k = 2):
- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings

Analysis:

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

 $\mathsf{OPT}_B \ge |\mathsf{Steiner} \mathsf{Tree}_B|$

 $OPT_R \ge |Steiner Tree_R|$

- let ALG_B , ALG_R be the resulting trees

Before removing cycles/shortcutting $ALG_B = |MST_B|$

$$\frac{\mathsf{ALG}}{\mathsf{OPT}} \leq \frac{|\operatorname{\mathsf{MST}}_R| + 3|\operatorname{\mathsf{MST}}_B|}{|\operatorname{\mathsf{Steiner Tree}}_R| + |\operatorname{\mathsf{Steiner Tree}}_B|} \leq \rho \frac{|\operatorname{\mathsf{MST}}_R| + 3|\operatorname{\mathsf{MST}}_B|}{|\operatorname{\mathsf{MST}}_R| + |\operatorname{\mathsf{MST}}_B|} \leq \rho \cdot 2$$

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

- **Proof** Algorithm (k = 2):
- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings

Analysis:

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

 $\mathsf{OPT}_B \geq |\mathsf{Steiner Tree}_B|$

 $\mathsf{OPT}_R \ge |\mathsf{Steiner } \mathsf{Tree}_R|$

- let ALG_B , ALG_R be the resulting trees Before removing cycles/shortcutting

 $ALG_B = |MST_B|$

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

- **Proof** Algorithm (k = 2):
- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings

Analysis:

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

 $\mathsf{OPT}_B \ge |\mathsf{Steiner} \mathsf{Tree}_B|$

 $OPT_R \ge |Steiner Tree_R|$

- let ALG_B , ALG_R be the resulting trees Before removing cycles/shortcutting

 $ALG_B = |MST_B|$

$$\frac{\mathsf{ALG}}{\mathsf{OPT}} \leq \frac{|\operatorname{\mathsf{MST}}_R| + 3|\operatorname{\mathsf{MST}}_B|}{|\operatorname{\mathsf{Steiner Tree}}_R| + |\operatorname{\mathsf{Steiner Tree}}_B|} \leq \rho \frac{|\operatorname{\mathsf{MST}}_R| + 3|\operatorname{\mathsf{MST}}_B|}{|\operatorname{\mathsf{MST}}_R| + |\operatorname{\mathsf{MST}}_B|} \leq \rho \cdot 2$$

Theorem CST (with k colors) admits a $(k\rho)$ -approximation

- **Proof** Algorithm (k = 2):
- construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings

Analysis:

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

$$\mathsf{OPT}_B \ge |\mathsf{Steiner Tree}_B|$$

 $\mathsf{OPT}_R \ge |\mathsf{Steiner Tree}_R|$

– let ALG_B , ALG_R be the resulting trees Before removing cycles/shortcutting

 $ALG_B = |MST_B|$

$$\frac{\mathsf{ALG}}{\mathsf{OPT}} \leq \frac{|\operatorname{\mathsf{MST}}_R| + 3|\operatorname{\mathsf{MST}}_B|}{|\operatorname{\mathsf{Steiner Tree}}_R| + |\operatorname{\mathsf{Steiner Tree}}_B|} \leq \rho \frac{|\operatorname{\mathsf{MST}}_R| + 3|\operatorname{\mathsf{MST}}_B|}{|\operatorname{\mathsf{MST}}_R| + |\operatorname{\mathsf{MST}}_B|} \leq \rho \cdot 2$$

CST (with k colors) admits a $(k\rho)$ -approximation Theorem

- **Proof** Algorithm (k = 2): $(1 + \varepsilon)$ -approx. Steiner construct red and blue minimum spanning trees
- take the shorter one, add a "shell" around it of another color
- remove crossings

Analysis:

– let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

$$\mathsf{OPT}_B \geq |\mathsf{Steiner Tree}_B|$$

 $OPT_R \geq |Steiner Tree_R|$

- let ALG_B, ALG_R be the resulting trees Before removing cycles/shortcutting

 $ALG_B = |MST_B|$

 $ALG_R = |MST_R| + 2|MST_B|$

$\frac{\text{ALG}}{\text{OPT}} \leq \frac{|\text{MST}_R| + 3|\text{MST}_B|}{|\text{Steiner Tree}_R| + |\text{Steiner Tree}_R|} \leq \rho \frac{|\text{MST}_R| + 3|\text{MST}_B|}{|\text{MST}_R| + |\text{MST}_B|} \leq \rho \cdot 2$

Colored (Euclidean) Spanning Trees $(k + \varepsilon)$

CST (with k colors) admits a (kp)-approximation Theorem

- **Proof** Algorithm (k = 2): $(1 + \varepsilon)$ -approx. Steiner construct red and blue minimum spanning trees
- take the shorter one , add a "shell" around it of another color
- remove crossings

Analysis:

- let OPT_B , OPT_R be optimal non-crossing trees Since the trees connect points

$$\mathsf{OPT}_B \ge |\mathsf{Steiner} \mathsf{Tree}_B|$$

 $OPT_R \geq |Steiner Tree_R|$

- let ALG_B, ALG_R be the resulting trees Before removing cycles/shortcutting

 $ALG_B = |MST_B|$

 $ALG_R = |MST_R| + 2|MST_B|$

$\frac{\text{ALG}}{\text{OPT}} \leq \frac{|\text{MST}_R| + 3|\text{MST}_B|}{|\text{Steiner Tree}_R| + |\text{Steiner Tree}_R|} \leq \rho \frac{|\text{MST}_R| + 3|\text{MST}_B|}{|\text{MST}_R| + |\text{MST}_B|} \leq \rho \cdot 2$

new visualization method MapSets demo is at http://gmap.cs.arizona.edu source code is at GitHub (C++, javascript)

 new visualization method MapSets demo is at http://gmap.cs.arizona.edu source code is at GitHub (C++, javascript)
new geometric problem CST

 $(k + \varepsilon)$ -approximation

- new visualization method MapSets demo is at http://gmap.cs.arizona.edu source code is at GitHub (C++, javascript)
 new geometric problem CST
 - $(k + \varepsilon)$ -approximation

What is next?

- quantitative/qualitative evaluation of the different methods
- visualizing graphs rather than sets
- improve approximation factors for CST

- new visualization method MapSets demo is at http://gmap.cs.arizona.edu source code is at GitHub (C++, javascript)
 new geometric problem CST
 - $(k + \varepsilon)$ -approximation

What is next?

- quantitative/qualitative evaluation of the different methods
- visualizing graphs rather than sets
- improve approximation factors for CST

Thank you!