Karlsruhe Institute of Technology

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs

Martin Nöllenburg, Roman Prutkin, and Ignaz Rutter

Drawings with Geodesic-Path Tendency

straight-line drawings of $G=(V, E)$; for each pair $s, t \in V$ exists st path ρ, along which we get closer to t

Empirical findings

such drawings make path-finding tasks easier
[Huang et al. 2009], [Purchase et al. 2013]

Drawings with Geodesic-Path Tendency

straight-line drawings of $G=(V, E)$; for each pair $s, t \in V$ exists st path ρ, along which we get closer to t

possible interpretations of closer

greedy:
get closer on vertices

- self-approaching:
... on all intermediate points
- increasing chords:
self-approaching in both directions
- monotone:
closer regarding projection on some line
- strongly monotone:
... regarding projection on line st

Greedy Embeddings (GE) [Rao et al. 2003]

greedy path exists between each pair $s, t \in V$

- path $\rho=\left(v_{1}, v_{2}, \ldots, t\right)$ greedy if $\left|v_{i+1} t\right|<\left|v_{i} t\right|$ for all i
- motivated by local routing in wireless sensor networks

Greedy Embeddings (GE) [Rao et al. 2003]

greedy path exists between each pair $s, t \in V$

- path $\rho=\left(v_{1}, v_{2}, \ldots, t\right)$ greedy if $\left|v_{i+1} t\right|<\left|v_{i} t\right|$ for all i
- motivated by local routing in wireless sensor networks

Related Work

3-conn. planar graphs have GE in \mathbb{R}^{2}
[Papadimitriou, Ratajczak 2005], [Leighton, Moitra 2010], [Angelini et al. 2010] virtual coordinates with $O(\log n)$ bits in \mathbb{H}^{2} and \mathbb{R}^{2}
[Eppstein, Goodrich 2008], [Goodrich, Strash 2009]
every tree has GE in hyperbolic plane \mathbb{H}^{2}
[Kleinberg, 2007]
characterization of trees with $G E$ in \mathbb{R}^{2}
[Nöllenburg, Prutkin 2013]
open: planar GE of 3-conn. graphs?

Monotone Drawings [Angelini et al. 2012]

monotone path exists between each pair $s, t \in V$

- path monotone if its curve monotone
- strongly monotone: monotonicity direction $\overrightarrow{s t}$

strongly monotone path

Monotone Drawings [Angelini etal. 2012]

monotone path exists between each pair $s, t \in V$

- path monotone if its curve monotone
- strongly monotone: monotonicity direction $\overrightarrow{s t}$
biconnected planar graphs admit monotone drawings
plane graphs admit monotone drawings with few bends
open: strongly monotone planar drawings of triangulations

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on
increasing chords: for a, b, c, d along the curve, $|b c| \leq|a d|$ equivalent: self-approaching in both directions

Self-Approaching Drawings

self-approaching curve: for any a, b, c along the curve, $|b c| \leq|a c|$ equivalent: no normal crosses the curve later on
increasing chords: for a, b, c, d along the curve, $|b c| \leq|a d|$ equivalent: self-approaching in both directions

Related Work

paths have bounded detour
length $\leq 5.33|s t|$ for self-approaching,
$\leq 2.09|s t|$ for increasing chords
characterization of trees with self-approaching drawing
[Alamdari et al. 2013]
open: 3-connected planar?
planar self-approaching drawings?

Contributions

Every triangulation has an increasing-chord drawing.

- has spanning downward-triangulated binary cactus [Angelini et al. 2010]
such cactus has increasing-chord drawing

Contributions

Every triangulation has an increasing-chord drawing.
has spanning downward-triangulated binary cactus [Angelini et al. 2010]
such cactus has increasing-chord drawing

Some binary cactuses have no self-approaching drawing.

- above proof strategy does not work :(
- it worked for greedy drawings

Contributions

Every triangulation has an increasing-chord drawing.
has spanning downward-triangulated binary cactus [Angelini et al. 2010]
such cactus has increasing-chord drawing

Some binary cactuses have no self-approaching drawing.

- above proof strategy does not work :(
- it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Contributions

Every triangulation has an increasing-chord drawing.

- has spanning downward-triangulated binary cactus [Angelini et al. 2010]
a such cactus has increasing-chord drawing
Some binary cactuses have no self-approaching drawing.
- above proof strategy does not work :(
- it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings.

- characterize drawable trees
- every 3-connected planar graph is drawable

Recall: GE of 3-connected Planar Graphs

drawing spanner greedily
G has Hamiltonian path: easy

3-conn. planar are "almost" Hamiltonian: contain closed 2-walk
have spanning binary cactus

Recall: GE of 3-connected Planar Graphs

drawing spanner greedily

G has Hamiltonian path: easy

3-conn. planar are "almost" Hamiltonian: contain closed 2-walk
have spanning binary cactus

binary cactus

each edge part of ≤ 1 cycle each vertex part of ≤ 2 cycles

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

GE of a Binary Cactus

GE of a Binary Cactus

GE of a Binary Cactus

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

GE of a Binary Cactus

Similar Idea for Increasing Chords

Triangulations have downward-triangulated spanning binary cactus.

Similar Idea for Increasing Chords

Triangulations have downward-triangulated spanning binary cactus.

downward edges

Similar Idea for Increasing Chords

Theorem

Every triangulation has an increasing-chords drawing.

Proof (similar to proof for GE)

By induction: every downward-triangulated binary cactus has increasing-chord drawing with almost-vertical downward edges

base case

Similar Idea for Increasing Chords

Theorem

Every triangulation has an increasing-chords drawing.

Proof (similar to proof for GE)

By induction: every downward-triangulated binary cactus has increasing-chord drawing with almost-vertical downward edges

Similar Idea for Increasing Chords

Theorem

Every triangulation has an increasing-chords drawing.

Proof (similar to proof for GE)

By induction: every downward-triangulated binary cactus has increasing-chord drawing with almost-vertical downward edges

Contributions

Every triangulation has an increasing-chord drawing.
has spanning downward-triangulated binary cactus [Angelini et al. 2010] such cactus has increasing-chord drawing

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(

- it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings. characterize drawable trees
every 3-connected planar graph is drawable

Non-Triangulated Binary Cactus

Theorem

G_{9} has no self-approaching drawing.
This covers all embeddings of G_{9} including non-planar.

Non-Triangulated Binary Cactus

Theorem

G_{9} has no self-approaching drawing.
Proof overview. Every self-approaching drawing of G_{9} contains a drawing of a subcactus, in which:

Claim 1

Each block is smaller than its parent block.
subcactus with root c_{k}

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Non-Triangulated Binary Cactus

Theorem

G_{9} has no self-approaching drawing.
Proof overview. Every self-approaching drawing of G_{9} contains a drawing of a subcactus, in which:

Claim 1

Each block is smaller than its parent block.

Claim 2

each self-approaching path from b_{i} downwards and to the left uses a_{i}; each self-approaching path from b_{i} downwards and to the right uses c_{i};

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Non-Triangulated Binary Cactus

Theorem

G_{9} has no self-approaching drawing.
Proof overview. Every self-approaching drawing of G_{9} contains a drawing of a subcactus, in which:

Claim 1

Each block is smaller than its parent block.

Claim 2

each self-approaching path from b_{i} downwards and to the left uses a_{i}; each self-approaching path from b_{i} downwards and to the right uses c_{i};

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block; z to Claim 1.

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Divergence of Blocks, Small Angles

Lemma

Consider greedy drawing of a cactus, vertices s, t and cutvertices v_{1}, \ldots, v_{k} on each st path. It holds:
($s, v_{1}, \ldots, v_{k}, t$) is drawn greedily, i.e., each of its subpaths is greedy; rays from v_{1} through s and from v_{k} through t diverge.

Divergence of Blocks, Small Angles

Lemma

Consider greedy drawing of a cactus, vertices s, t and cutvertices v_{1}, \ldots, v_{k} on each st path. It holds:
$\left(s, v_{1}, \ldots, v_{k}, t\right)$ is drawn greedily, i.e., each of its subpaths is greedy; rays from v_{1} through s and from v_{k} through t diverge.
Def. Cone U_{r} of upward directions of subcactus rooted at r

Lemma

Consider self-appr. drawing of G_{9}. If $\left|U_{r_{i}}\right|<180^{\circ}$, then $U_{a_{i}} \cap U_{c_{i}}=\emptyset$. There exists a cutvertex r at depth 4 and $\left|U_{r}\right|<22.5^{\circ}$
(sufficiently small for our proof).
From now on, consider G_{r}.

Divergence of Blocks, Small Angles

Wlog, in subcactus G_{r} rooted at r, all $r_{i} a_{i}, r_{i} c_{i}$ are almost vertical.

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Divergence of Blocks, Small Angles

Wlog, in subcactus G_{r} rooted at r, all $r_{i} a_{i}, r_{i} c_{i}$ are almost vertical.

Lemma

All $\overrightarrow{a_{i} b_{i}}, \overrightarrow{b_{i} c_{i}}$ are almost horizontal and point rightwards.
A line between points of sibling subcactuses is almost horizontal.

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Blocks Become Smaller

Claim 1

Each block is smaller than its parent block.

Self-approaching Downward Left/Right Paths

Claim 2

each self-approaching path from b_{i} downwards and to the left uses a_{i};
each self-approaching path from b_{i} downwards and to the right uses c_{i};

Self-approaching Downward Left/Right Paths

Claim 2

each self-approaching path from b_{i} downwards and to the left uses a_{i};
each self-approaching path from b_{i} downwards and to the right uses c_{i};

Proof
$\angle a_{1} c_{1} b_{2}<90^{\circ}$
$\Rightarrow b_{2} c_{2}$ can not lie on a self-appr. $b_{2}-a_{1}$ path.

Deriving Contradiction

Claim 3

Claim $\mathbf{2} \Rightarrow$ some block is bigger than its parent block.

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Key Idea
consider common cutvertices of self-approaching downward paths

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Key Idea
 consider common cutvertices of self-approaching downward paths

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Key Idea
 consider common cutvertices of self-approaching downward paths

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Key Idea

consider common cutvertices of self-approaching downward paths
\Rightarrow lie inside cone
\Rightarrow lie inside 2 cones

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Key Idea
 consider common cutvertices of self-approaching downward paths

\Rightarrow lie inside cone
\Rightarrow lie inside 2 cones
\Rightarrow lie inside a strip
\Rightarrow lie inside 2 strips

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Key Idea
 consider common cutvertices of self-approaching downward paths

\Rightarrow lie inside cone
\Rightarrow lie inside 2 cones
\Rightarrow lie inside a strip
\Rightarrow lie inside 2 strips

Deriving Contradiction

Claim 3

Claim $2 \Rightarrow$ some block is bigger than its parent block.

Key Idea
 consider common cutvertices of self-approaching downward paths

\Rightarrow lie inside cone
\Rightarrow lie inside 2 cones
\Rightarrow lie inside a strip
\Rightarrow lie inside 2 strips
\Rightarrow parent block is small

Contributions

Every triangulation has an increasing-chord drawing. has spanning downward-triangulated binary cactus [Angelini et al. 2010] such cactus has increasing-chord drawing

```
Some binary cactuses have no self-approaching drawing. above proof strategy does not work :( it worked for greedy drawings
```

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings. characterize drawable trees every 3-connected planar graph is drawable

Planar Increasing-Chord Drawings of 3-Trees

Schnyder labeling of a triangulation

coloring and orientation of edges
external vertices r, g, b : all edges incoming
internal: one outgoing in each color, cyclic order counting triangles in red, green, blue regions gives
 coordinates of plane drawing

Planar Increasing-Chord Drawings of 3-Trees

Schnyder labeling of a triangulation

coloring and orientation of edges
external vertices r, g, b : all edges incoming
internal: one outgoing in each color, cyclic order counting triangles in red, green, blue regions gives coordinates of plane drawing

α-Schnyder drawings for $\alpha \in\left[0,60^{\circ}\right]$

outgoing edges are inside cones of size α

Planar Increasing-Chord Drawings of 3-Trees

Lemma
30°-Schnyder drawings are increasing-chords.

Planar Increasing-Chord Drawings of 3-Trees

Lemma

30°-Schnyder drawings are increasing-chords.

Proof

consider paths from s, t to external vertices r, g, b combine ρ_{r}, ρ_{b} : no normal crosses another edge

Planar Increasing-Chord Drawings of 3-Trees

Theorem

Planar 3-trees have ε-Schnyder drawings $\forall \varepsilon>0$ and, thus, have increasing-chords drawings.

1) pick a triangle

2) insert new edges

3) 3 nodes inside cones

4) move pattern slightly, goto 2

Contributions

Every triangulation has an increasing-chord drawing. has spanning downward-triangulated binary cactus [Angelini et al. 2010] such cactus has increasing-chord drawing

```
Some binary cactuses have no self-approaching drawing. above proof strategy does not work : it worked for greedy drawings
```

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings.

- characterize drawable trees
every 3-connected planar graph is drawable

Increasing-Chord in the Hyperbolic Plane

increasing-chord drawing of complete binary tree in \mathbb{H}^{2}

Theorem

A tree has a self-approaching/increasing-chord drawing in \mathbb{H}^{2} iff it has max. degree 3 or is a subdivision of $K_{1,4}$
\Rightarrow 3-conn. planar graphs have increasing-chord drawings in \mathbb{H}^{2}.
Binary cactuses have planar increasing-chord drawings in \mathbb{H}^{2}.

Conclusion

Every triangulation has an increasing-chord drawing.
Some binary cactuses have no self-approaching drawing.
Planar 3-trees have planar increasing-chord drawings.
Hyperbolic plane is more powerful for increasing-chord drawings.

Conclusion

Every triangulation has an increasing-chord drawing.
Some binary cactuses have no self-approaching drawing.
Planar 3-trees have planar increasing-chord drawings.
Hyperbolic plane is more powerful for increasing-chord drawings.

Open questions

graphs with self-appr. but without incr.-chord drawing?
self-approaching/increasing-chord drawings for 3-conn. planar?
if yes, not just by drawing cactus spanner
planar self-approaching/incr.-chords drawings of triangulations?

