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Drawings with Geodesic-Path Tendency
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straight-line drawings of G = (V , E); for each pair s, t ∈ V exists
st path ρ, along which we get closer to t

s t

ρ

Empirical findings
such drawings make path-finding tasks easier

[Huang et al. 2009], [Purchase et al. 2013]
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straight-line drawings of G = (V , E); for each pair s, t ∈ V exists
st path ρ, along which we get closer to t

s t

ρ

possible interpretations of closer
greedy: get closer on vertices

self-approaching: . . . on all intermediate points

increasing chords: self-approaching in both directions

monotone: closer regarding projection on some line

strongly monotone: . . . regarding projection on line st
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Greedy Embeddings (GE)
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s

t

[Rao et al. 2003]

greedy path exists between each pair s, t ∈ V

path ρ = (v1, v2, . . . , t) greedy if |vi+1t| < |vi t| for all i

motivated by local routing in wireless sensor networks

v1

v2
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Greedy Embeddings (GE)
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[Rao et al. 2003]

open: planar GE of 3-conn. graphs?

Related Work
3-conn. planar graphs have GE in R2

virtual coordinates with O(log n) bits in H2 and R2

every tree has GE in hyperbolic plane H2

characterization of trees with GE in R2

[Papadimitriou, Ratajczak 2005], [Leighton, Moitra 2010], [Angelini et al. 2010]

[Eppstein, Goodrich 2008], [Goodrich, Strash 2009]

[Kleinberg, 2007]

[Nöllenburg, Prutkin 2013]

greedy path exists between each pair s, t ∈ V

path ρ = (v1, v2, . . . , t) greedy if |vi+1t| < |vi t| for all i

motivated by local routing in wireless sensor networks
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Monotone Drawings
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s t

strongly monotone path

[Angelini et al. 2012]

monotone path exists between each pair s, t ∈ V
path monotone if its curve monotone

strongly monotone: monotonicity direction ~st



M. Nöllenburg, R. Prutkin, and I. Rutter – On Self-Approaching and Increasing-Chord Drawings
Institute of Theoretical Informatics
Prof. Dr. Dorothea Wagner

Monotone Drawings
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[Angelini et al. 2012]

monotone path exists between each pair s, t ∈ V
path monotone if its curve monotone

strongly monotone: monotonicity direction ~st

open: strongly monotone planar drawings of triangulations

biconnected planar graphs admit monotone drawings

plane graphs admit monotone drawings with few bends
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Self-Approaching Drawings
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s

t

a

b

c

self-approaching curve: for any a, b, c along the curve, |bc| ≤ |ac|
equivalent: no normal crosses the curve later on
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Self-Approaching Drawings
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s
t

a

b
c

d

increasing chords: for a, b, c, d along the curve, |bc| ≤ |ad |
equivalent: self-approaching in both directions

self-approaching curve: for any a, b, c along the curve, |bc| ≤ |ac|
equivalent: no normal crosses the curve later on
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Self-Approaching Drawings
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increasing chords: for a, b, c, d along the curve, |bc| ≤ |ad |
equivalent: self-approaching in both directions

Related Work
paths have bounded detour

length ≤ 5.33|st| for self-approaching,

≤ 2.09|st| for increasing chords

characterization of trees with self-approaching drawing
[Alamdari et al. 2013]

open: 3-connected planar?

planar self-approaching drawings?planar self-approaching drawings?

[Icking et al. 1995]

[Rote 1994]

self-approaching curve: for any a, b, c along the curve, |bc| ≤ |ac|
equivalent: no normal crosses the curve later on
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Every triangulation has an increasing-chord drawing.
has spanning downward-triangulated binary cactus
such cactus has increasing-chord drawing

[Angelini et al. 2010]
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Every triangulation has an increasing-chord drawing.
has spanning downward-triangulated binary cactus
such cactus has increasing-chord drawing

[Angelini et al. 2010]

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings
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has spanning downward-triangulated binary cactus
such cactus has increasing-chord drawing

[Angelini et al. 2010]

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings.
first construction for str. monotone/greedy drawings of pl. 3-trees
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Every triangulation has an increasing-chord drawing.
has spanning downward-triangulated binary cactus
such cactus has increasing-chord drawing

[Angelini et al. 2010]

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings.
first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings.
characterize drawable trees
every 3-connected planar graph is drawable
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Recall: GE of 3-connected Planar Graphs

drawing spanner greedily
G has Hamiltonian path: easy

3-conn. planar are “almost” Hamiltonian: contain closed 2-walk

have spanning binary cactus

6/16
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Recall: GE of 3-connected Planar Graphs

drawing spanner greedily
G has Hamiltonian path: easy

3-conn. planar are “almost” Hamiltonian: contain closed 2-walk

have spanning binary cactus
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binary cactus
each edge part of ≤ 1 cycle
each vertex part of ≤ 2 cycles
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GE of a Binary Cactus [Leighton, Moitra 2008]
[Angelini et al. 2009]

7/16
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Similar Idea for Increasing Chords
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r

Triangulations have downward-triangulated spanning binary cactus.
[Angelini et al. 2010]
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Similar Idea for Increasing Chords
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downward edges

r

Triangulations have downward-triangulated spanning binary cactus.
[Angelini et al. 2010]
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v0

v1 vk

vi vj

base case

Theorem
Every triangulation has an increasing-chords drawing.

Proof (similar to proof for GE)
By induction: every downward-triangulated binary cactus has
increasing-chord drawing with almost-vertical downward edges
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v1

s

vi

ρi t

vj

ρ−1
j

induction step

draw child cactuses
inside narrow cones

Theorem
Every triangulation has an increasing-chords drawing.

Proof (similar to proof for GE)
By induction: every downward-triangulated binary cactus has
increasing-chord drawing with almost-vertical downward edges
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Similar Idea for Increasing Chords
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induction step

draw child cactuses
sufficiently small

vi−1

vi

♦i
sr

i−1 > 90◦

< 90◦

Theorem
Every triangulation has an increasing-chords drawing.

Proof (similar to proof for GE)
By induction: every downward-triangulated binary cactus has
increasing-chord drawing with almost-vertical downward edges
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Contributions

Every triangulation has an increasing-chord drawing.
has spanning downward-triangulated binary cactus
such cactus has increasing-chord drawing

[Angelini et al. 2010]

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings.
first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings.
characterize drawable trees
every 3-connected planar graph is drawable
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Non-Triangulated Binary Cactus

G0 G1

b0

Gn−1

νa0 c0

r0

Gn−1

Gn

depth 0

depth 1

depth 2

Theorem
G9 has no self-approaching drawing.

This covers all embeddings of G9 including non-planar.

9/16
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Non-Triangulated Binary Cactus

bi
ai ci

ri

block µi

with root ri

ck

subcactus with root ck

block µj is
parent of µi

µj

µi

Theorem
G9 has no self-approaching drawing.

Each block is smaller than its parent block.
Claim 1

9/16

Proof overview. Every self-approaching drawing of G9 contains a
drawing of a subcactus, in which:
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path downwards
and to the right

bibiai ci

aj

ck

Theorem
G9 has no self-approaching drawing.

Each block is smaller than its parent block.
Claim 1

path downwards
and to the left

each self-approaching path from bi

downwards and to the left uses ai ;

each self-approaching path from bi

downwards and to the right uses ci ;

Claim 2

9/16

Proof overview. Every self-approaching drawing of G9 contains a
drawing of a subcactus, in which:
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Non-Triangulated Binary Cactus

path downwards
and to the right

bibiai ci

aj

ck

Theorem
G9 has no self-approaching drawing.

Each block is smaller than its parent block.
Claim 1

path downwards
and to the left

each self-approaching path from bi

downwards and to the left uses ai ;

each self-approaching path from bi

downwards and to the right uses ci ;

Claim 2

9/16

Claim 3
Claim 2 ⇒ some block is bigger
than its parent block;  to Claim 1.

Proof overview. Every self-approaching drawing of G9 contains a
drawing of a subcactus, in which:
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Divergence of Blocks, Small Angles

s
t

v1
vk

10/16

Lemma
Consider greedy drawing of a cactus, vertices s, t and cutvertices
v1, . . . , vk on each st path. It holds:

(s, v1, . . . , vk , t) is drawn greedily, i.e., each of its subpaths is greedy;

rays from v1 through s and from vk through t diverge.
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r

Lemma
Consider greedy drawing of a cactus, vertices s, t and cutvertices
v1, . . . , vk on each st path. It holds:

(s, v1, . . . , vk , t) is drawn greedily, i.e., each of its subpaths is greedy;

rays from v1 through s and from vk through t diverge.

Cone Ur of upward directions of subcactus rooted at rDef.

Lemma
Consider self-appr. drawing of G9.
If |Uri | < 180◦, then Uai ∩ Uci = ∅.
There exists a cutvertex r at depth 4
and |Ur | < 22.5◦

(sufficiently small for our proof).

From now on, consider Gr .
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s
t

v1
vk

ri

ai ci

bi

in subcactus Gr rooted at r , all riai , rici are almost vertical.Wlog,
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Divergence of Blocks, Small Angles

10/16

s
t

v1
vk

ri

ai ci

bi

in subcactus Gr rooted at r , all riai , rici are almost vertical.Wlog,

Lemma

All ~aibi , ~bici are almost horizontal and point rightwards.

A line between points of sibling subcactuses is almost horizontal.
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Blocks Become Smaller

ri

ciai

≤ ε

≤ ε

11/16

Claim 1
Each block is smaller than its parent block.
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Self-approaching Downward Left/Right Paths
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b2
a2 c2

a1

c0

each self-approaching path from bi

downwards and to the left uses ai ;

each self-approaching path from bi

downwards and to the right uses ci ;

Claim 2
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b2
a2 c2

a1

c0

each self-approaching path from bi

downwards and to the left uses ai ;

each self-approaching path from bi

downwards and to the right uses ci ;

Claim 2 Proof
∠a1c1b2 < 90◦

⇒ b2c2 can not lie on a
self-appr. b2-a1 path.
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Deriving Contradiction
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Claim 3
Claim 2⇒ some block is bigger than its parent block.
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Claim 3
Claim 2⇒ some block is bigger than its parent block.

consider common cutver-
tices of self-approaching
downward paths

Key Idea
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Claim 3
Claim 2⇒ some block is bigger than its parent block.

consider common cutver-
tices of self-approaching
downward paths

Key Idea

⇒ lie inside cone
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Claim 3
Claim 2⇒ some block is bigger than its parent block.

consider common cutver-
tices of self-approaching
downward paths

Key Idea

⇒ lie inside cone

⇒ lie inside 2 cones
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must converge!

Claim 3
Claim 2⇒ some block is bigger than its parent block.

consider common cutver-
tices of self-approaching
downward paths

Key Idea

⇒ lie inside cone

⇒ lie inside 2 cones
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Claim 2⇒ some block is bigger than its parent block.

consider common cutver-
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downward paths
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⇒ lie inside cone

⇒ lie inside 2 cones

⇒ lie inside a strip
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r

a c

consider intersection of two such stripsClaim 3
Claim 2⇒ some block is bigger than its parent block.

consider common cutver-
tices of self-approaching
downward paths

Key Idea

⇒ lie inside cone

⇒ lie inside 2 cones

⇒ lie inside a strip

⇒ lie inside 2 strips
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Deriving Contradiction
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Claim 3
Claim 2⇒ some block is bigger than its parent block.

consider common cutver-
tices of self-approaching
downward paths

Key Idea

⇒ lie inside cone

⇒ lie inside 2 cones

⇒ lie inside a strip

⇒ lie inside 2 strips
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Deriving Contradiction
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Claim 3
Claim 2⇒ some block is bigger than its parent block.

consider common cutver-
tices of self-approaching
downward paths

Key Idea

⇒ lie inside cone

⇒ lie inside 2 cones

⇒ lie inside a strip

⇒ lie inside 2 strips

⇒ parent block is small
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Contributions

Every triangulation has an increasing-chord drawing.
has spanning downward-triangulated binary cactus
such cactus has increasing-chord drawing

[Angelini et al. 2010]

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings.
first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings.
characterize drawable trees
every 3-connected planar graph is drawable
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Planar Increasing-Chord Drawings of 3-Trees

coloring and orientation of edges

external vertices r , g, b: all edges incoming

internal: one outgoing in each color, cyclic order

counting triangles in red, green, blue regions gives
coordinates of plane drawing

Schnyder labeling of a triangulation
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Planar Increasing-Chord Drawings of 3-Trees

120◦

α
2

coloring and orientation of edges

external vertices r , g, b: all edges incoming

internal: one outgoing in each color, cyclic order

counting triangles in red, green, blue regions gives
coordinates of plane drawing

Schnyder labeling of a triangulation

outgoing edges are inside cones of size α
α-Schnyder drawings for α ∈ [0, 60◦]
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Planar Increasing-Chord Drawings of 3-Trees

14/16

Lemma
30◦-Schnyder drawings are increasing-chords.
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Planar Increasing-Chord Drawings of 3-Trees

14/16

b g

r

s

u

t

ρb

ρr

s

u

t

Lemma
30◦-Schnyder drawings are increasing-chords.

Proof
consider paths from s, t to external vertices r , g, b

combine ρr , ρb: no normal crosses another edge
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Planar Increasing-Chord Drawings of 3-Trees
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1) pick a triangle 2) 3 nodes inside cones

3) insert new edges 3) move pattern slightly, goto 2

Theorem
Planar 3-trees have ε-Schnyder drawings ∀ε > 0 and, thus, have
increasing-chords drawings.
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Contributions

Every triangulation has an increasing-chord drawing.
has spanning downward-triangulated binary cactus
such cactus has increasing-chord drawing

[Angelini et al. 2010]

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings.
first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings.
characterize drawable trees
every 3-connected planar graph is drawable
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Increasing-Chord in the Hyperbolic Plane
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increasing-chord drawing of
complete binary tree in H2

Theorem
A tree has a self-approaching/increasing-chord drawing in H2 iff it has
max. degree 3 or is a subdivision of K1,4

⇒ 3-conn. planar graphs have increasing-chord drawings in H2.

Binary cactuses have planar increasing-chord drawings in H2.
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Conclusion
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Every triangulation has an increasing-chord drawing.

Some binary cactuses have no self-approaching drawing.

Planar 3-trees have planar increasing-chord drawings.

Hyperbolic plane is more powerful for increasing-chord drawings.
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Conclusion

16/16

Open questions

Every triangulation has an increasing-chord drawing.

Some binary cactuses have no self-approaching drawing.

Planar 3-trees have planar increasing-chord drawings.

Hyperbolic plane is more powerful for increasing-chord drawings.

graphs with self-appr. but without incr.-chord drawing?

self-approaching/increasing-chord drawings for 3-conn. planar?

if yes, not just by drawing cactus spanner

planar self-approaching/incr.-chords drawings of triangulations?
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