

On Self-Approaching and Increasing-Chord Drawings of 3-Connected Planar Graphs

Martin Nöllenburg, Roman Prutkin, and Ignaz Rutter

September 26, 2014

INSTITUTE OF THEORETICAL INFORMATICS

KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

Drawings with Geodesic-Path Tendency

straight-line drawings of G = (V, E); for each pair $s, t \in V$ exists *st* path ρ , along which we get closer to *t*

Empirical findings

such drawings make path-finding tasks easier

[Huang et al. 2009], [Purchase et al. 2013]

Drawings with Geodesic-Path Tendency

straight-line drawings of G = (V, E); for each pair $s, t \in V$ exists *st* path ρ , along which we get closer to *t*

- possible interpretations of closer
- greedy:

get closer on vertices

self-approaching:

... on all intermediate points

increasing chords:

monotone:

- self-approaching in both directions
- strongly monotone:
- closer regarding projection on some line
 - ... regarding projection on line st

Greedy Embeddings (GE) [Rao et al. 2003]

greedy path exists between each pair $s, t \in V$

- path $\rho = (v_1, v_2, ..., t)$ greedy if $|v_{i+1}t| < |v_it|$ for all *i*
- motivated by local routing in wireless sensor networks

Greedy Embeddings (GE) [Rao et al. 2003]

greedy path exists between each pair $s, t \in V$

- path $\rho = (v_1, v_2, ..., t)$ greedy if $|v_{i+1}t| < |v_it|$ for all *i*
- motivated by local routing in wireless sensor networks

Related Work

3-conn. planar graphs have GE in \mathbb{R}^2 [Papadimitriou, Ratajczak 2005], [Leighton, Moitra 2010], [Angelini et al. 2010] virtual coordinates with $O(\log n)$ bits in \mathbb{H}^2 and \mathbb{R}^2 [Eppstein, Goodrich 2008], [Goodrich, Strash 2009] every tree has GE in hyperbolic plane \mathbb{H}^2 [Kleinberg, 2007] characterization of trees with GE in \mathbb{R}^2 [Nöllenburg, Prutkin 2013]

open: planar GE of 3-conn. graphs?

Monotone Drawings [Angelini et al. 2012]

monotone path exists between each pair $s, t \in V$

- path monotone if its curve monotone
- **strongly** monotone: monotonicity direction \vec{st}

strongly monotone path

Monotone Drawings [Angelini et al. 2012]

monotone path exists between each pair $s, t \in V$

- path monotone if its curve monotone
- **strongly** monotone: monotonicity direction \vec{st}

biconnected planar graphs admit monotone drawings

plane graphs admit monotone drawings with few bends

open: strongly monotone planar drawings of triangulations

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any a, b, c along the curve, $|bc| \leq |ac|$ equivalent: no normal crosses the curve later on S

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any a, b, c along the curve, $|bc| \leq |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

increasing chords: for *a*, *b*, *c*, *d* along the curve, $|bc| \le |ad|$ equivalent: self-approaching in both directions

self-approaching curve: for any *a*, *b*, *c* along the curve, $|bc| \le |ac|$ equivalent: no normal crosses the curve later on

increasing chords: for *a*, *b*, *c*, *d* along the curve, $|bc| \le |ad|$ equivalent: self-approaching in both directions

Related Work

paths have bounded detour

length \leq 5.33|st| for self-approaching,

 \leq 2.09|*st*| for increasing chords

[lcking et al. 1995]

[Rote 1994]

characterization of trees with self-approaching drawing

[Alamdari et al. 2013]

open: 3-connected planar?

planar self-approaching drawings?

Every triangulation has an increasing-chord drawing.
 has spanning downward-triangulated binary cactus [Angelini et al. 2010]
 such cactus has increasing-chord drawing

Every triangulation has an increasing-chord drawing.
 has spanning downward-triangulated binary cactus [Angelini et al. 2010]
 such cactus has increasing-chord drawing

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings

Every triangulation has an increasing-chord drawing.
 has spanning downward-triangulated binary cactus [Angelini et al. 2010]
 such cactus has increasing-chord drawing

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Every triangulation has an increasing-chord drawing.
 has spanning downward-triangulated binary cactus [Angelini et al. 2010]
 such cactus has increasing-chord drawing

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings.
characterize drawable trees
every 3-connected planar graph is drawable

Recall: GE of 3-connected Planar Graphs

drawing spanner greedily

G has Hamiltonian path: easy

3-conn. planar are "almost" Hamiltonian: contain closed 2-walk

have spanning binary cactus

Recall: GE of 3-connected Planar Graphs

drawing spanner greedily

G has Hamiltonian path: easy

3-conn. planar are "almost" Hamiltonian: contain closed 2-walk

have spanning binary cactus

binary cactus each edge part of \leq 1 cycle each vertex part of \leq 2 cycles

[Leighton, Moitra 2008] [Angelini et al. 2009]

Triangulations have downward-triangulated spanning binary cactus. [Angelini et al. 2010]

Triangulations have downward-triangulated spanning binary cactus. [Angelini et al. 2010]

downward edges

Theorem

Every triangulation has an increasing-chords drawing.

Proof (similar to proof for GE)

By induction: every downward-triangulated binary cactus has increasing-chord drawing with almost-vertical downward edges

Theorem

Every triangulation has an increasing-chords drawing.

Proof (similar to proof for GE)

By induction: every downward-triangulated binary cactus has increasing-chord drawing with almost-vertical downward edges

draw child cactuses inside narrow cones

induction step

Theorem

Every triangulation has an increasing-chords drawing.

Proof (similar to proof for GE)

By induction: every downward-triangulated binary cactus has increasing-chord drawing with almost-vertical downward edges

Every triangulation has an increasing-chord drawing. has spanning downward-triangulated binary cactus [Angelini et al. 2010] such cactus has increasing-chord drawing

Some binary cactuses have no self-approaching drawing.
above proof strategy does not work :(
it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings. characterize drawable trees every 3-connected planar graph is drawable

Theorem

 G_9 has no self-approaching drawing.

This covers all embeddings of G_9 including non-planar.

M. Nöllenburg, R. Prutkin, and I. Rutter – On Self-Approaching and Increasing-Chord Drawings

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

9/16

Theorem

 G_9 has no self-approaching drawing.

Proof overview. Every self-approaching drawing of G_9 contains a drawing of a subcactus, in which:

Claim 1

Each block is smaller than its parent block.

Claim 2

each self-approaching path from b_i downwards and to the left uses a_i ;

each self-approaching path from b_i downwards and to the right uses c_i ;

Theorem

 G_9 has no self-approaching drawing.

Proof overview. Every self-approaching drawing of G_9 contains a drawing of a subcactus, in which:

Claim 1

Each block is smaller than its parent block.

Claim 2

each self-approaching path from b_i downwards and to the left uses a_i ;

each self-approaching path from b_i downwards and to the right uses c_i ;

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block; \oint to **Claim 1**.

Lemma

Consider greedy drawing of a cactus, vertices s, t and cutvertices v_1, \ldots, v_k on each *st* path. It holds:

 (s, v_1, \ldots, v_k, t) is drawn greedily, i.e., each of its subpaths is greedy; rays from v_1 through *s* and from v_k through *t* diverge.

Lemma

Consider greedy drawing of a cactus, vertices s, t and cutvertices v_1, \ldots, v_k on each *st* path. It holds:

 (s, v_1, \ldots, v_k, t) is drawn greedily, i.e., each of its subpaths is greedy; rays from v_1 through *s* and from v_k through *t* diverge.

Def. Cone U_r of upward directions of subcactus rooted at r

Lemma

Consider self-appr. drawing of G_9 . If $|U_{r_i}| < 180^\circ$, then $U_{a_i} \cap U_{c_i} = \emptyset$. There exists a cutvertex *r* at depth 4 and $|U_r| < 22.5^\circ$ (sufficiently small for our proof).

From now on, consider G_r .

Divergence of Blocks, Small Angles

Wlog, in subcactus G_r rooted at r, all $r_i a_i$, $r_i c_i$ are almost vertical.

M. Nöllenburg, **R. Prutkin**, and I. Rutter – On Self-Approaching and Increasing-Chord Drawings

Drawings 10/16 🧧

Divergence of Blocks, Small Angles

Wlog, in subcactus G_r rooted at r, all $r_i a_i$, $r_i c_i$ are almost vertical.

Lemma

All $\vec{a_i b_i}$, $\vec{b_i c_i}$ are almost horizontal and point rightwards.

A line between points of sibling subcactuses is almost horizontal.

Blocks Become Smaller

Claim 1

Each block is smaller than its parent block.

Self-approaching Downward Left/Right Paths

Claim 2

each self-approaching path from b_i downwards and to the left uses a_i ;

each self-approaching path from b_i downwards and to the right uses c_i ;

Institute of Theoretical Informatics Prof. Dr. Dorothea Wagner

Self-approaching Downward Left/Right Paths

Claim 2

each self-approaching path from b_i downwards and to the left uses a_i ;

each self-approaching path from b_i downwards and to the right uses c_i ;

Proof

 $\angle a_1 c_1 b_2 < 90^{\circ}$

 $\Rightarrow b_2 c_2$ can not lie on a self-appr. $b_2 - a_1$ path.

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

13/16

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

13/16

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

M. Nöllenburg, **R. Prutkin**, and I. Rutter – On Self-Approaching and Increasing-Chord Drawings

13/16

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

Key Idea

consider common cutvertices of self-approaching downward paths

 \Rightarrow lie inside cone

- \Rightarrow lie inside 2 cones
- \Rightarrow lie inside a strip
- \Rightarrow lie inside 2 strips

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

Key Idea

consider common cutvertices of self-approaching downward paths

 \Rightarrow lie inside cone

- \Rightarrow lie inside 2 cones
- \Rightarrow lie inside a strip
- \Rightarrow lie inside 2 strips

Claim 3

Claim 2 \Rightarrow some block is bigger than its parent block.

Key Idea

consider common cutvertices of self-approaching downward paths

 \Rightarrow lie inside cone

- \Rightarrow lie inside 2 cones
- \Rightarrow lie inside a strip
- \Rightarrow lie inside 2 strips

 \Rightarrow parent block is small

Every triangulation has an increasing-chord drawing. has spanning downward-triangulated binary cactus [Angelini et al. 2010] such cactus has increasing-chord drawing

Some binary cactuses have no self-approaching drawing. above proof strategy does not work :(it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings. characterize drawable trees every 3-connected planar graph is drawable

Schnyder labeling of a triangulation

coloring and orientation of edges

external vertices *r*, *g*, *b*: all edges incoming

internal: one outgoing in each color, cyclic order

counting triangles in red, green, blue regions gives coordinates of plane drawing

Schnyder labeling of a triangulation

coloring and orientation of edges

external vertices *r*, *g*, *b*: all edges incoming

internal: one outgoing in each color, cyclic order

counting triangles in red, green, blue regions gives coordinates of plane drawing

 α -Schnyder drawings for $\alpha \in [0, 60^{\circ}]$

outgoing edges are inside cones of size $\boldsymbol{\alpha}$

Lemma

 30° -Schnyder drawings are increasing-chords.

Lemma

 30° -Schnyder drawings are increasing-chords.

Proof

consider paths from *s*, *t* to external vertices *r*, *g*, *b*

combine ρ_r , ρ_b : no normal crosses another edge

14/16

Theorem

Planar 3-trees have ϵ -Schnyder drawings $\forall \epsilon > 0$ and, thus, have increasing-chords drawings.

14/16

Every triangulation has an increasing-chord drawing. has spanning downward-triangulated binary cactus [Angelini et al. 2010] such cactus has increasing-chord drawing

Some binary cactuses have no self-approaching drawing. above proof strategy does not work :(it worked for greedy drawings

Planar 3-trees have planar increasing-chord drawings. first construction for str. monotone/greedy drawings of pl. 3-trees

Hyperbolic plane is more powerful for increasing-chord drawings.
characterize drawable trees
every 3-connected planar graph is drawable

Increasing-Chord in the Hyperbolic Plane

increasing-chord drawing of complete binary tree in \mathbb{H}^2

Theorem

A tree has a self-approaching/increasing-chord drawing in \mathbb{H}^2 iff it has max. degree 3 or is a subdivision of $K_{1,4}$

 \Rightarrow 3-conn. planar graphs have increasing-chord drawings in \mathbb{H}^2 .

Binary cactuses have *planar* increasing-chord drawings in \mathbb{H}^2 .

Conclusion

Every triangulation has an increasing-chord drawing.

Some binary cactuses have no self-approaching drawing.

Planar 3-trees have planar increasing-chord drawings.

Hyperbolic plane is more powerful for increasing-chord drawings.

Every triangulation has an increasing-chord drawing.

Some binary cactuses have no self-approaching drawing.

Planar 3-trees have planar increasing-chord drawings.

Hyperbolic plane is more powerful for increasing-chord drawings.

Open questions

graphs with self-appr. but without incr.-chord drawing?

self-approaching/increasing-chord drawings for 3-conn. planar? if yes, not just by drawing cactus spanner

planar self-approaching/incr.-chords drawings of triangulations?

