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André Schulz, Joachim Spoerhase & Alexander Wolff



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.

1

2

3

4

5

6



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.

d
1

2

3

4

5

6



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.

d
1

2

3

4

5

6



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.

d
1

2

3

4

5

6

A graph is monotone: ∃ monotone path for every vertex-pair.



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.

d

A u–v path is strongly monotone if d = −→uv .

1

2

3

4

5

6

1

2

3

4

5

6

A graph is monotone: ∃ monotone path for every vertex-pair.



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.

d

A u–v path is strongly monotone if d = −→uv .

d

1

2

3

4

5

6

1

2

3

4

5

6

A graph is monotone: ∃ monotone path for every vertex-pair.



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.

d

A u–v path is strongly monotone if d = −→uv .

d

1

2

3

4

5

6

1

2

3

4

5

6

A graph is monotone: ∃ monotone path for every vertex-pair.



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.

d

A u–v path is strongly monotone if d = −→uv .

d

1

2

3

4

5

6

1

2

3

4

5

6

A graph is monotone: ∃ monotone path for every vertex-pair.



Monotone Drawings

A path is monotone: ∃ direction d such that
vertex-order in d = vertex-order along the path.

d

A u–v path is strongly monotone if d = −→uv .

1

2

3

4

5

6

1

2

3

4

5

6

A graph is monotone: ∃ monotone path for every vertex-pair.



Known Results

Any n-vertex tree admits a straight-line monotone drawing
on a grid of size O(n1.6)× O(n1.6) or O(n)× O(n2).

[Angelini et al. JGAA’12]



Known Results

Any n-vertex tree admits a straight-line monotone drawing
on a grid of size O(n1.6)× O(n1.6) or O(n)× O(n2).

[Angelini et al. JGAA’12]



Known Results

Any n-vertex tree admits a straight-line monotone drawing
on a grid of size O(n1.6)× O(n1.6) or O(n)× O(n2).

[Angelini et al. JGAA’12]



Known Results

Any n-vertex tree admits a straight-line monotone drawing
on a grid of size O(n1.6)× O(n1.6) or O(n)× O(n2).

Any biconnected planar graph has a monotone drawing
(using exponential area).

[Angelini et al. JGAA’12]



Known Results

Any n-vertex tree admits a straight-line monotone drawing
on a grid of size O(n1.6)× O(n1.6) or O(n)× O(n2).

Any biconnected planar graph has a monotone drawing
(using exponential area).

[Angelini et al. JGAA’12]

Any connected outerplane graph admits a straight-line
monotone drawing on a grid of size O(n)× O(n2).

[Angelini et al. Algorithmica’13]



Known Results

Any n-vertex tree admits a straight-line monotone drawing
on a grid of size O(n1.6)× O(n1.6) or O(n)× O(n2).

Any biconnected planar graph has a monotone drawing
(using exponential area).

Any connected planar graph admits a straight-line monotone
drawing on a grid of size O(n)× O(n2).

[Angelini et al. JGAA’12]

[Hossain and Rahman FAW’14]

Any connected outerplane graph admits a straight-line
monotone drawing on a grid of size O(n)× O(n2).

[Angelini et al. Algorithmica’13]
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Convex Drawings

convex!

Any convex straight-line drawing is crossing-free and monotone
– but in general not strongly monotone.

Convex drawing: Every face is convex.

[Carlson & Eppstein GD’06]
Can compute convex drawings of trees,
with optimal angular resolution.
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Observation.
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Lemma.
If a path is monotone to ~v1 and ~v2,
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Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

a

All angles < π ⇒ strictly convex X
Strongly Monotone?

Case 1: a and b on common root-leaf path

W.l.o.g. assume a lies bottom-left

X
Case 2: a and b in opposite sectors X
Case 3: else

b

d

X

Theorem.
Any proper binary tree has a strongly monotone
and strictly convex drawing.
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General Trees
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w1
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1. Substitute high-degree vertices by paths

3. Shortcut edges

w1

wi

wk

2. Draw Proper Binary Tree

w1

wi

wk

Theorem.
Any tree has a strongly
monotone drawing.
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Theorem.
Any biconnected outerplanar graph
has a strongly monotone and
strictly convex drawing.

C
v1

vn

Theorem.
There is an infinite family of
connected planar graphs that do not
have a strongly monotone drawing
in any combinatorial embedding.
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Open Problems

Does any tree have a strongly monotone drawing on a grid
of polynomial size?

Is there a triconnected (or biconnected) planar graph that
does not have any strongly monotone drawing?

Are our drawings for general trees also convex?

If yes, can this be tested efficiently?

If yes, then all Halin graphs would automatically have
convex and strictly monotone drawings, too.
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