

Chair for **INFORMATICS I** Efficient Algorithms and Knowledge-Based Systems

On Monotone Drawings of Trees

Philipp Kindermann Chair of Computer Science I Universität Würzburg

Joint work with André Schulz, Joachim Spoerhase & Alexander Wolff

A path is *monotone*: \exists direction *d* such that vertex-order in *d* = vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair.

A path is *monotone*: \exists direction *d* such that vertex-order in *d* = vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair. A u-v path is strongly monotone if $d = \overline{uv}$.

A path is *monotone*: \exists direction *d* such that vertex-order in *d* = vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair. A u-v path is strongly monotone if $d = \overline{uv}$.

A path is *monotone*: \exists direction *d* such that vertex-order in *d* = vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair. A u-v path is strongly monotone if $d = \overline{uv}$.

A path is *monotone*: \exists direction *d* such that vertex-order in *d* = vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair. A u-v path is strongly monotone if $d = \overrightarrow{uv}$.

A path is *monotone*: \exists direction *d* such that vertex-order in *d* = vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair. A u-v path is strongly monotone if $d = \overrightarrow{uv}$.

[Angelini et al.

• Any *n*-vertex tree admits a straight-line monotone drawing on a grid of size $O(n^{1.6}) \times O(n^{1.6})$ or $O(n) \times O(n^2)$.

JGAA'12]

[Angelini et al. JGAA'12] • Any *n*-vertex tree admits a straight-line monotone drawing on a grid of size $O(n^{1.6}) \times O(n^{1.6})$ or $O(n) \times O(n^2)$.

[Angelini et al.

JGAA'12]

- Any *n*-vertex tree admits a straight-line monotone drawing on a grid of size $O(n^{1.6}) \times O(n^{1.6})$ or $O(n) \times O(n^2)$.
- Any biconnected planar graph has a monotone drawing (using exponential area).

[Angelini et al.

• Any *n*-vertex tree admits a straight-line monotone drawing on a grid of size $O(n^{1.6}) \times O(n^{1.6})$ or $O(n) \times O(n^2)$.

JGAA'12

 Any biconnected planar graph has a monotone drawing (using exponential area).

[Angelini et al. Algorithmica'13] Any connected *outerplane* graph admits a straight-line monotone drawing on a grid of size $O(n) \times O(n^2)$.

[Angelini et al.

• Any *n*-vertex tree admits a straight-line monotone drawing on a grid of size $O(n^{1.6}) \times O(n^{1.6})$ or $O(n) \times O(n^2)$.

JGAA'12]

 Any biconnected planar graph has a monotone drawing (using exponential area).

[Angelini et al. Algorithmica'13] Any connected *outerplane* graph admits a straight-line monotone drawing on a grid of size $O(n) \times O(n^2)$.

[Hossain and Rahman FAW'14] Any connected *planar* graph admits a straight-line monotone drawing on a grid of size $O(n) \times O(n^2)$.

Convex Drawings Convex drawing: Every face is convex.

Convex drawing: Every face is convex.

Any convex straight-line drawing is crossing-free and monotone

Convex drawing: Every face is convex.

Any convex straight-line drawing is crossing-free and monotone - but in general not strongly monotone.

Convex drawing: Every face is convex.

Any convex straight-line drawing is crossing-free and monotone – but in general not strongly monotone.

Let $P_d = \{(x, y) \mid gcd(x, y) = 1, 0 \le x \le y \le d\}.$

Lemma. Any two vectors of P_d are separated by an angle of $\Omega(1/|P_d|)$.

Our Main Tool: Primitive Vectors

Lemma. Any two vectors of P_d are separated by an angle of $\Omega(1/|P_d|)$. For $|P_d| \ge n-1$, choose $d \approx 4\sqrt{n}$.

Our Main Tool: Primitive Vectors

Lemma. Any two vectors of P_d are separated by an angle of $\Omega(1/|P_d|)$. For $|P_d| \ge n-1$, choose $d \approx 4\sqrt{n}$.

Our Main Tool: Primitive Vectors

Lemma. Any two vectors of P_d are separated by an angle of $\Omega(1/|P_d|)$. For $|P_d| \ge n-1$, choose $d \approx 4\sqrt{n}$.

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step III: Draw Tree

Step III: Draw Tree

Step III: Draw Tree

Step III: Draw Tree

Step III: Draw Tree

Step III: Draw Tree

Step III: Draw Tree

Step III: Draw Tree

Step III: Draw Tree

Step III: Draw Tree

Step III: Draw Tree

Step II: Primitive Vectors

Theorem.

Every tree has a monotone and convex drawing on a grid of size $O(n^{1.5}) \times O(n^{1.5})$.

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Proper Binary Trees: No degree-2 vertex

Strongly monotone?

Observation.

A *u*-*v*-path is *not* strongly monotone $\Leftrightarrow \exists$ an edge *e* with $\measuredangle(\vec{e}, \vec{uv}) > \pi/2$.

Observation.

A *u*-*v*-path is *not* strongly monotone $\Leftrightarrow \exists$ an edge *e* with $\measuredangle(\vec{e}, \vec{uv}) > \pi/2$.

Observation.

A *u*-*v*-path is *not* strongly monotone $\Leftrightarrow \exists$ an edge *e* with $\measuredangle(\vec{e}, \vec{uv}) > \pi/2$.

Observation.

A *u*-*v*-path is *not* strongly monotone $\Leftrightarrow \exists$ an edge *e* with $\measuredangle(\vec{e}, \vec{u}\vec{v}) > \pi/2$.

Lemma. If a path is monotone to $\vec{v_1}$ and $\vec{v_2}$, then it is monotone to $\vec{v_3}$ between $\vec{v_1}$ and $\vec{v_2}$.

Observation.

A *u*-*v*-path is *not* strongly monotone $\Leftrightarrow \exists$ an edge *e* with $\measuredangle(\vec{e}, \vec{uv}) > \pi/2$.

Lemma. If a path is monotone to $\vec{v_1}$ and $\vec{v_2}$, then it is monotone to $\vec{v_3}$ between $\vec{v_1}$ and $\vec{v_2}$.

Observation.

A *u*-*v*-path is *not* strongly monotone $\Leftrightarrow \exists$ an edge *e* with $\measuredangle(\vec{e}, \vec{uv}) > \pi/2$.

Lemma.

If a path is monotone to $\vec{v_1}$ and $\vec{v_2}$, then it is monotone to $\vec{v_3}$ between $\vec{v_1}$ and $\vec{v_2}$.

Observation.

A *u*-*v*-path is *not* strongly monotone $\Leftrightarrow \exists$ an edge *e* with $\measuredangle(\vec{e}, \vec{uv}) > \pi/2$.

Lemma.

If a path is monotone to \vec{v}_1 and \vec{v}_2 , then it is monotone to \vec{v}_3 between \vec{v}_1 and \vec{v}_2 .

Observation.

A *u*-*v*-path is *not* strongly monotone $\Leftrightarrow \exists$ an edge *e* with $\measuredangle(\vec{e}, \vec{u}\vec{v}) > \pi/2$.

Lemma.

If a path is monotone to $\vec{v_1}$ and $\vec{v_2}$, then it is monotone to $\vec{v_3}$ between $\vec{v_1}$ and $\vec{v_2}$.

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?
- W.I.o.g. assume *a* lies bottom-left
- **Case 1**: *a* and *b* on common root-leaf path

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\Rightarrow \overrightarrow{ba} \in \checkmark$

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex $\sqrt{}$
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\Rightarrow \overrightarrow{ba} \in \$, path from *b* to $a \in \$

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex $\sqrt{}$
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\Rightarrow \overrightarrow{ba} \in \$, path from *b* to $a \in \$ \Rightarrow path from *b* to *a* is strongly monotone

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path \checkmark

 $\Rightarrow \overrightarrow{ba} \in \mathbf{I}$, path from *b* to $a \in \mathbf{I}$

 \Rightarrow path from *b* to *a* is strongly monotone

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: a and b in opposite sectors

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\sqrt{}$

Case 2: *a* and *b* in opposite sectors

 $\Rightarrow \overrightarrow{ba} \in \mathbf{I}$, path from *b* to $a \in \mathbf{I}$

 \Rightarrow path from *b* to *a* is strongly monotone

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\sqrt{}$

Case 2: *a* and *b* in opposite sectors

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path \checkmark

Case 2: *a* and *b* in opposite sectors

bo	0
d	
2	
2000	000

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\sqrt{}$

Case 2: *a* and *b* in opposite sectors

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\sqrt{}$

Case 2: *a* and *b* in opposite sectors

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\sqrt{}$

Case 2: *a* and *b* in opposite sectors

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume a lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Case 3: else

a-d-path monotone to A

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Case 3: else

a-*d*-path monotone to *A d*-*b*-path monotone to *A*

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Case 3: else

a-*d*-path monotone to *A d*-*b*-path monotone to *A* \Rightarrow *a*-*b*-path monotone to *A*

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Case 3: else

a-b-path monotone to A

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Case 3: else

a-b-path monotone to A

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Case 3: else

a-b-path monotone to A

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Case 3: else

a-b-path monotone to *A a-b*-path monotone to *B*

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: a and b on common root-leaf path

Case 2: *a* and *b* in opposite sectors \checkmark

Case 3: else

a-b-path monotone to *A a-b*-path monotone to *B*

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Case 3: else

a-b-path monotone to *A a-b*-path monotone to *B*

Proper Binary Trees: No degree-2 vertex

- All angles $< \pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path

Case 2: *a* and *b* in opposite sectors

Case 3: else

a-b-path monotone to A*a-b*-path monotone to B*a-b*-path strongly monotone

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\sqrt{}$

Case 2: *a* and *b* in opposite sectors

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex \checkmark
- Strongly Monotone?

W.I.o.g. assume *a* lies bottom-left

Case 1: *a* and *b* on common root-leaf path $\sqrt{}$

Case 2: *a* and *b* in opposite sectors

Case 3: else

Theorem.

Any proper binary tree has a strongly monotone and strictly convex drawing.

1. Substitute high-degree vertices by paths

- 1. Substitute high-degree vertices by paths
- 2. Draw Proper Binary Tree

- 1. Substitute high-degree vertices by paths
- 2. Draw Proper Binary Tree
- 3. Shortcut edges

- 1. Substitute high-degree vertices by paths
- 2. Draw Proper Binary Tree
- 3. Shortcut edges

- 1. Substitute high-degree vertices by paths
- 2. Draw Proper Binary Tree
- 3. Shortcut edges

Theorem. Any tree has a strongly monotone drawing.

Planar Graphs

Theorem. Any biconnected outerplanar graph has a strongly monotone and strictly convex drawing.

Planar Graphs

Theorem.

Any biconnected outerplanar graph has a strongly monotone and strictly convex drawing.

Theorem.

There is an infinite family of connected planar graphs that do not have a strongly monotone drawing in any combinatorial embedding.

Object of polynomial size?
Object of polynomial size?

- Ooes any tree have a strongly monotone drawing on a grid of polynomial size?
- Is there a triconnected (or biconnected) planar graph that does not have any strongly monotone drawing?

- Ooes any tree have a strongly monotone drawing on a grid of polynomial size?
- Is there a triconnected (or biconnected) planar graph that does not have any strongly monotone drawing? If yes, can this be tested efficiently?

- Object of the strong of the
- Is there a triconnected (or biconnected) planar graph that does not have any strongly monotone drawing?
 If yes, can this be tested efficiently?
- Are our drawings for general trees also convex?

- Ooes any tree have a strongly monotone drawing on a grid of polynomial size?
- Is there a triconnected (or biconnected) planar graph that does not have any strongly monotone drawing?
 If yes, can this be tested efficiently?
- Are our drawings for general trees also convex? If yes, then all Halin graphs would automatically have convex and strictly monotone drawings, too.