On Monotone Drawings of Trees

Philipp Kindermann
Chair of Computer Science I
Universität Würzburg

Joint work with
André Schulz, Joachim Spoerhase \& Alexander Wolff

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair.

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair.
A $u-v$ path is strongly monotone if $d=\overrightarrow{u v}$.

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair.
A $u-v$ path is strongly monotone if $d=\overrightarrow{u v}$.

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair.
A $u-v$ path is strongly monotone if $d=\overrightarrow{u v}$.

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair.
A $u-v$ path is strongly monotone if $d=\overrightarrow{u v}$.

Monotone Drawings

A path is monotone: \exists direction d such that vertex-order in $d=$ vertex-order along the path.

A graph is monotone: \exists monotone path for every vertex-pair.
A $u-v$ path is strongly monotone if $d=\overrightarrow{u v}$.

Known Results

[Angelini et al.

JGAA'12]

- Any n-vertex tree admits a straight-line monotone drawing on a grid of size $O\left(n^{1.6}\right) \times O\left(n^{1.6}\right)$

Known Results

[Angelini et al.

- Any n-vertex tree admits a straight-line monotone drawing on a grid of size $O\left(n^{1.6}\right) \times O\left(n^{1.6}\right)$

Known Results

[Angelini et al.

JGAA'12]

- Any n-vertex tree admits a straight-line monotone drawing on a grid of size $O\left(n^{1.6}\right) \times O\left(n^{1.6}\right)$

Known Results

[Angelini et al.

- Any n-vertex tree admits a straight-line monotone drawing on a grid of size $O\left(n^{1.6}\right) \times O\left(n^{1.6}\right)$
- Any biconnected planar graph has a monotone drawing (using exponential area).

Known Results

[Angelini et al.

- Any n-vertex tree admits a straight-line monotone drawing on a grid of size $O\left(n^{1.6}\right) \times O\left(n^{1.6}\right)$
- Any biconnected planar graph has a monotone drawing (using exponential area).

[Angelini et al.

Algorithmica'13]
Any connected outerplane graph admits a straight-line monotone drawing on a grid of size $O(n) \times O\left(n^{2}\right)$.

Known Results

[Angelini et al.

- Any n-vertex tree admits a straight-line monotone drawing on a grid of size $O\left(n^{1.6}\right) \times O\left(n^{1.6}\right)$
- Any biconnected planar graph has a monotone drawing (using exponential area).
[Angelini et al. Algorithmica'13]
Any connected outerplane graph admits a straight-line monotone drawing on a grid of size $O(n) \times O\left(n^{2}\right)$.
[Hossain and Rahman
Any connected planar graph admits a straight-line monotone drawing on a grid of size $O(n) \times O\left(n^{2}\right)$.

Convex Drawings

Convex drawing: Every face is convex.

Convex Drawings

Convex drawing: Every face is convex.

Convex Drawings

Convex drawing: Every face is convex.

Convex Drawings

Convex drawing: Every face is convex.

Convex Drawings

Convex drawing: Every face is convex.

Convex Drawings

Convex drawing: Every face is convex.

Convex Drawings

Convex drawing: Every face is convex.

Any convex straight-line drawing is crossing-free and monotone

Convex Drawings

Convex drawing: Every face is convex.

Any convex straight-line drawing is crossing-free and monotone

- but in general not strongly monotone.

Convex Drawings

Convex drawing: Every face is convex.

Any convex straight-line drawing is crossing-free and monotone - but in general not strongly monotone.

[Carlson \& Eppstein

Can compute convex drawings of trees, with optimal angular resolution.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} .
$$

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Farey sequence

$F_{1}: \frac{0}{1}$

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

$F_{1}: \frac{0}{1}$
$\begin{array}{lll}\frac{a}{b} & \frac{c}{d} \\ 1 & & l \\ \frac{a}{b} & \frac{a+c}{b+d} & \frac{c}{d}\end{array}$
Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Our Main Tool: Primitive Vectors

Let $P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\}$.

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Farey sequence

$\frac{a}{b} \quad \frac{c}{d} \quad$ Set $P_{d}=F_{d}$ can be computed in linear time

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Our Main Tool: Primitive Vectors

$$
\text { Let } P_{d}=\{(x, y) \mid \operatorname{gcd}(x, y)=1,0 \leq x \leq y \leq d\} \text {. }
$$

Lemma. Any two vectors of P_{d} are separated by an angle of $\Omega\left(1 /\left|P_{d}\right|\right)$. For $\left|P_{d}\right| \geq n-1$, choose $d \approx 4 \sqrt{n}$.

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step I: Rank Edges

Step II: Primitive Vectors

Step I: Rank Edges

Step II: Primitive Vectors

Step I: Rank Edges

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Step I: Rank Edges

Step III: Draw Tree

Step II: Primitive Vectors

Theorem.
Every tree has a monotone and convex drawing on a grid of size $O\left(n^{1.5}\right) \times O\left(n^{1.5}\right)$.

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex

Strongly Monotone Drawings

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly monotone?

Properties

Observation.

A u - v-path is not strongly monotone $\Leftrightarrow \exists$ an edge e with $\measuredangle(\vec{e}, \vec{u} \vec{v})>\pi / 2$.

Properties

Observation.

A u - v-path is not strongly monotone $\Leftrightarrow \exists$ an edge e with $\measuredangle(\vec{e}, \vec{u} \vec{v})>\pi / 2$.

Properties

Observation.

A u-v-path is not strongly monotone $\Leftrightarrow \exists$ an edge e with $\measuredangle(\vec{e}, \vec{u} \vec{v})>\pi / 2$.

Properties

Observation.

A u-v-path is not strongly monotone $\Leftrightarrow \exists$ an edge e with $\measuredangle(\vec{e}, \vec{u} \vec{v})>\pi / 2$.

Lemma.

If a path is monotone to \vec{v}_{1} and \vec{v}_{2}, then it is monotone to \vec{v}_{3} between \vec{v}_{1} and \vec{v}_{2}.

Properties

Observation.

A u - v-path is not strongly monotone $\Leftrightarrow \exists$ an edge e with $\measuredangle(\vec{e}, \vec{u} \vec{v})>\pi / 2$.

Lemma.

If a path is monotone to \vec{v}_{1} and \vec{v}_{2}, then it is monotone to \vec{v}_{3} between \vec{v}_{1} and \vec{v}_{2}.

Properties

Observation.

A u - v-path is not strongly monotone $\Leftrightarrow \exists$ an edge e with $\measuredangle(\vec{e}, \vec{u} \vec{v})>\pi / 2$.

Lemma.

If a path is monotone to \vec{v}_{1} and \vec{v}_{2}, then it is monotone to \vec{v}_{3} between \vec{v}_{1} and \vec{v}_{2}.

Properties

Observation.

A u-v-path is not strongly monotone $\Leftrightarrow \exists$ an edge e with $\measuredangle(\vec{e}, \vec{u} \vec{v})>\pi / 2$.

Lemma.

If a path is monotone to \vec{v}_{1} and \vec{v}_{2}, then it is monotone to \vec{v}_{3} between \vec{v}_{1} and \vec{v}_{2}.

Properties

Observation.

A u - v-path is not strongly monotone $\Leftrightarrow \exists$ an edge e with $\measuredangle(\vec{e}, \vec{u} \vec{v})>\pi / 2$.

Lemma.

If a path is monotone to \vec{v}_{1} and \vec{v}_{2}, then it is monotone to \vec{v}_{3} between \vec{v}_{1} and \vec{v}_{2}.

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex - All angles $<\pi \Rightarrow$ strictly convex

- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex - All angles $<\pi \Rightarrow$ strictly convex

- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex - All angles $<\pi \Rightarrow$ strictly convex

- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path

$$
\Rightarrow \overrightarrow{b a} \in \square
$$

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex - All angles $<\pi \Rightarrow$ strictly convex

- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path

$$
\Rightarrow \overrightarrow{b a} \in \square, \text { path from } b \text { to } a \in \square
$$

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path $\Rightarrow \overrightarrow{b a} \in \square$, path from b to $a \in \square$
\Rightarrow path from b to a is strongly monotone

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
$\Rightarrow \overrightarrow{b a} \in \square$, path from b to $a \in \square$
\Rightarrow path from b to a is strongly monotone

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
$\Rightarrow \overrightarrow{b a} \in \square$, path from b to $a \in \square$
\Rightarrow path from b to a is strongly monotone

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
a-d-path monotone to A

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
a- d-path monotone to A d-b-path monotone to A

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
a- d-path monotone to A
d - b-path monotone to A
$\Rightarrow a$-b-path monotone to A

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
a - b-path monotone to A

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
a - b-path monotone to A

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
a - b-path monotone to A

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
a - b-path monotone to A
a-b-path monotone to B

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
a - b-path monotone to A
a - b-path monotone to B

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
a - b-path monotone to A
a - b-path monotone to B

Proper Binary Trees

Proper Binary Trees: No degree- 2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else
$a-b$-path monotone to A
a-b-path monotone to B
a - b-path strongly monotone

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex - All angles $<\pi \Rightarrow$ strictly convex

- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Proper Binary Trees

Proper Binary Trees: No degree-2 vertex

- All angles $<\pi \Rightarrow$ strictly convex
- Strongly Monotone?
W.I.o.g. assume a lies bottom-left

Case 1: a and b on common root-leaf path
Case 2: a and b in opposite sectors
Case 3: else

Theorem.

Any proper binary tree has a strongly monotone and strictly convex drawing.

General Trees

General Trees

1. Substitute high-degree vertices by paths

General Trees

1. Substitute high-degree vertices by paths
2. Draw Proper Binary Tree

General Trees

1. Substitute high-degree vertices by paths
2. Draw Proper Binary Tree
3. Shortcut edges

General Trees

1. Substitute high-degree vertices by paths
2. Draw Proper Binary Tree
3. Shortcut edges

General Trees

1. Substitute high-degree vertices by paths
2. Draw Proper Binary Tree
3. Shortcut edges

Theorem.

Any tree has a strongly monotone drawing.

Planar Graphs

Theorem.

Any biconnected outerplanar graph has a strongly monotone and strictly convex drawing.

Planar Graphs

Theorem.

Any biconnected outerplanar graph has a strongly monotone and strictly convex drawing.

Theorem.

There is an infinite family of connected planar graphs that do not have a strongly monotone drawing in any combinatorial embedding.

Open Problems

- Does any tree have a strongly monotone drawing on a grid of polynomial size?

Open Problems

- Does any tree have a strongly monotone drawing on a grid of polynomial size?
- Is there a triconnected (or biconnected) planar graph that does not have any strongly monotone drawing?

Open Problems

- Does any tree have a strongly monotone drawing on a grid of polynomial size?
- Is there a triconnected (or biconnected) planar graph that does not have any strongly monotone drawing? If yes, can this be tested efficiently?

Open Problems

- Does any tree have a strongly monotone drawing on a grid of polynomial size?
- Is there a triconnected (or biconnected) planar graph that does not have any strongly monotone drawing? If yes, can this be tested efficiently?
- Are our drawings for general trees also convex?

Open Problems

- Does any tree have a strongly monotone drawing on a grid of polynomial size?
- Is there a triconnected (or biconnected) planar graph that does not have any strongly monotone drawing? If yes, can this be tested efficiently?
- Are our drawings for general trees also convex? If yes, then all Halin graphs would automatically have convex and strictly monotone drawings, too.

