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Crossing numbers for graphs

The crossing number of G , cr(G), is the minimum number of
edge-crossings taken over all proper drawings of G in the plane.

Pach and Tóth: what if a multiple crossings at a point is counted as
a single crossing?

→ degenerate crossing number
dcr(G).

Mohar: what if we allow self-crossings?

→ genus crossing number gcr(G)

.

For any graph G : gcr(G ) ≤ dcr(G ) ≤ cr(G )

Mohar’s Conjecture 1 (’07)

For every graph G , gcr(G ) = dcr(G ).
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Graphs embedded on surfaces

A surface is a topological space that locally looks like the plane.

In this talk, we deal with connected compact surfaces.

They are classified by their orientability and their genus.

An embedding of G on a surface S is an injective map G ↪→ S .

The non-orientable genus g(G) of a graph G is the minimum number of
cross-caps that it needs to be embedded on a surface.

Graph embeddings are hard to visualize on a surface.
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Cross-cap drawings and non-orientable
embeddings

One can represent a non-orientable embedding by a planar
drawing.
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Cross-cap drawings and non-orientable
embeddings

A cross-cap drawing is a planar drawing with such transverse
crossings at cross-caps.

Question

Can we control the number of times an edge enters a cross-cap?
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From crossing numbers to non-orientable
genus

These cross-caps can be interpreted as multiple transverse crossings.

Theorem (Mohar ’07)

For any graph G , gcr(G) = non-orientable genus of G .

A perfect cross-cap drawing for a graph is one in which each edge enters each
cross-cap at most once.
Mohar’s Conjecture 1 (’07)

For every graph G , dcr(G) = gcr(G) = g(G).
⇓

Every graph G admits a perfect cross-cap drawing with g(G) cross-caps.
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The Conjectures

Mohar’s Conjecture 1 (’07)

Every graph G admits a perfect cross-cap drawing with g(G) cross-caps.

Mohar’s (stronger) Conjecture 2 (’07)

Every loopless graph embedded on a non-orientable surface
admits a perfect cross-cap drawing.

Mohar’s (even stronger) Conjecture 3 (’07)

Every graph embedded on a non-orientable surface in which
loops are non-separating admits a perfect cross-cap drawing.

Theorem (Schaefer-Štefankovič)

A graph G embeddable on Ng admits a cross-cap drawing in which each edge
enters each cross-cap at most twice.

Theorem (F.,Hubard,de Mesmay ’23)

Apart from two exceptional families of graphs, all the 2-vertex loopless graphs
embedded on non-orientable surfaces satisfy Conjecture 2.
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Embedding schemes
An embedding for a graph, is entirely described by an
embedding scheme:

the cyclic ordering of the edges around the vertex
(in the non-orientable case) a signature +1 or −1 associated
to each edge

Given an embedding scheme, we can compute the faces of the
embedding:

A cross-cap drawing of an embedding scheme respects the
signatures: each edge with signature +1 (resp. −1) enters
even (resp. odd) number of cross-caps.
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An unexpected connection

Our main technical tool for our results comes from computational
biology.

The signed reversal distance between two signed words is the
minimum number of reversals to go from one to the other one.
Very important in computational genomics, computable in
polynomial time [Hannenhalli-Pevzner ’99].
Strong similarities with crosscap drawings, which we leverage
in all of our results.
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From signed reversals to cross-cap drawings

In our words, the Hannenhalli-Pevzner algorithm focuses on
counting and handling the cases where the minimum number
of signed reversals/crosscaps is different from the
non-orientable genus.

We prove that almost all of these cases can be handled in a
topological setting.
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From signed reversals to cross-cap drawings

In our words, the Hannenhalli-Pevzner algorithm focuses on
counting and handling the cases where the minimum number
of signed reversals/crosscaps is different from the
non-orientable genus.

We prove that almost all of these cases can be handled in a
topological setting.

→ dealing with these sub-words costs them extra cross-caps:

Positive block:
The frames 1 and 4 appear with 14
and 41 order around vertices.
all +1 signatures.

Negative block:
The frames 1 and 4 appear with 14
around both vertices.
all −1 signatures.
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The counter example

Mohar’s (stronger) Conjecture 2 (’07)

Every loopless graph embedded on a non-orientable surface admits a perfect
cross-cap drawing.

Conjecture 2 does not hold:

Theorem (F., Hubard, de Mesmay ’23)

There exists a 2-vertex loopless graph embedded on a non-orientable surface
that does not admit a perfect cross-cap drawing.
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Cross-cap drawings of 2-vertex schemes

Theorem (F., Hubard, de Mesmay ’23)

Apart from two exceptional families of graphs, all the 2-vertex
loopless graphs embedded on non-orientable surfaces satisfy
Conjecture 2.

In particular:

Under standard models of random
maps, almost all 2-vertex loopless
embedded graphs satisfy
Conjecture 2.

The behavior under adding edges
is counter-intuitive.
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Cross-cap drawings of 2-vertex schemes

Theorem (F., Hubard, de Mesmay ’23)

Apart from two exceptional families of graphs, all the 2-vertex
loopless graphs embedded on non-orientable surfaces satisfy
Conjecture 2.

Sketch of the proof:

→ reduce the scheme.

→ apply Hannenhalli-Pevzner
algorithm.

→ blow up the cross-caps.

→ complete the drawing.
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Conclusion

Allowing the graph to have more vertices, increases the possibility of
having a perfect cross-cap drawing.

→ Although Mohar’s conjectures 2 and 3 are wrong, there is a great chance
that conjecture 1 is correct.

Mohar’s Conjecture 1 (’07)

For every graph G , gcr(G) = dcr(G).

Thank You!
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