DEGENERATE CROSSING NUMBER AND SIGNED REVERSAL DISTANCE

Niloufar FULADI Alfredo HUBARD Arnaud de MESMAY

Université Gustave Eiffel, Paris

International Symposium on Graph Drawing Palermo, September 2023

OuTline

1 Introduction

2 Signed Reversal distance

3 Sketch of proofs

Crossing numbers For GRAPHS

- The crossing number of $G, \operatorname{cr}(G)$, is the minimum number of edge-crossings taken over all proper drawings of G in the plane.

Crossing numbers for graphs

- The crossing number of $G, \operatorname{cr}(G)$, is the minimum number of edge-crossings taken over all proper drawings of G in the plane.

- Pach and Tóth: what if a multiple crossings at a point is counted as a single crossing?
\rightarrow degenerate crossing number dcr(G).

Crossing numbers for graphs

- The crossing number of $G, \operatorname{cr}(G)$, is the minimum number of edge-crossings taken over all proper drawings of G in the plane.

- Pach and Tóth: what if a multiple crossings at a point is counted as a single crossing?
\rightarrow degenerate crossing number $\operatorname{dcr}(G)$.
- Mohar: what if we allow self-crossings?

\rightarrow genus crossing number $\operatorname{gcr}(G)$.

CROSSING NUMBERS FOR GRAPHS

- The crossing number of $G, \operatorname{cr}(G)$, is the minimum number of edge-crossings taken over all proper drawings of G in the plane.

- Pach and Tóth: what if a multiple crossings at a point is counted as a single crossing?
\rightarrow degenerate crossing number $\operatorname{dcr}(G)$.
- Mohar: what if we allow self-crossings?
 \rightarrow genus crossing number $\operatorname{gcr}(G)$.
- For any graph G :

$$
\operatorname{gcr}(G) \leq \operatorname{dcr}(G) \leq \operatorname{cr}(G)
$$

Crossing numbers for Graphs

- The crossing number of $G, \mathbf{c r}(G)$, is the minimum number of edge-crossings taken over all proper drawings of G in the plane.

- Pach and Tóth: what if a multiple crossings at a point is counted as a single crossing?
\rightarrow degenerate crossing number $\operatorname{dcr}(G)$.
- Mohar: what if we allow self-crossings?
 \rightarrow genus crossing number $\operatorname{gcr}(G)$.
- For any graph G :

$$
\operatorname{gcr}(G) \leq \operatorname{dcr}(G) \leq \operatorname{cr}(G)
$$

Mohar's Conjecture 1 ('07)
For every graph $G, \operatorname{gcr}(G)=\operatorname{dcr}(G)$.

Graphs embedded on surfaces

- A surface is a topological space that locally looks like the plane.
- In this talk, we deal with connected compact surfaces.
- They are classified by their orientability and their genus.

Graphs embedded on surfaces

- A surface is a topological space that locally looks like the plane.
- In this talk, we deal with connected compact surfaces.
- They are classified by their orientability and their genus.
- An embedding of G on a surface S is an injective map $G \hookrightarrow S$.

Graphs embedded on surfaces

- A surface is a topological space that locally looks like the plane.
- In this talk, we deal with connected compact surfaces.
- They are classified by their orientability and their genus.
- An embedding of G on a surface S is an injective map $G \hookrightarrow S$.

- The non-orientable genus $g(G)$ of a graph G is the minimum number of cross-caps that it needs to be embedded on a surface.

Graphs embedded on surfaces

- A surface is a topological space that locally looks like the plane.
- In this talk, we deal with connected compact surfaces.
- They are classified by their orientability and their genus.
- An embedding of G on a surface S is an injective map $G \hookrightarrow S$.

- The non-orientable genus $g(G)$ of a graph G is the minimum number of cross-caps that it needs to be embedded on a surface.

■ Graph embeddings are hard to visualize on a surface.

CROSS-CAP DRAWINGS AND NON-ORIENTABLE

 EMBEDDINGS■ One can represent a non-orientable embedding by a planar drawing.

CROSS-CAP DRAWINGS AND NON-ORIENTABLE

 EMBEDDINGS■ One can represent a non-orientable embedding by a planar drawing.

CROSS-CAP DRAWINGS AND NON-ORIENTABLE

 EMBEDDINGS■ One can represent a non-orientable embedding by a planar drawing.

CROSS-CAP DRAWINGS AND NON-ORIENTABLE

 EMBEDDINGS■ One can represent a non-orientable embedding by a planar drawing.

CROSS-CAP DRAWINGS AND NON-ORIENTABLE

 EMBEDDINGS■ One can represent a non-orientable embedding by a planar drawing.

CROSS-CAP DRAWINGS AND NON-ORIENTABLE

 EMBEDDINGS■ One can represent a non-orientable embedding by a planar drawing.

- A cross-cap drawing is a planar drawing with such transverse crossings at cross-caps.

CROSS-CAP DRAWINGS AND NON-ORIENTABLE EMBEDDINGS

- A cross-cap drawing is a planar drawing with such transverse crossings at cross-caps.

Can we control the number of times an edge enters a cross-cap?

FROM CROSSING NUMBERS TO NON-ORIENTABLE GENUS

These cross-caps can be interpreted as multiple transverse crossings.
Theorem (Mohar '07)
For any graph $G, \operatorname{gcr}(G)=$ non-orientable genus of G.

FROM CROSSING NUMBERS TO NON-ORIENTABLE GENUS

These cross-caps can be interpreted as multiple transverse crossings.

Theorem (Mohar '07)

For any graph $G, \operatorname{gcr}(G)=$ non-orientable genus of G.

A perfect cross-cap drawing for a graph is one in which each edge enters each cross-cap at most once.
Mohar's Conjecture 1 ('07)
For every graph $G, \operatorname{dcr}(G)=\operatorname{gcr}(G)=g(G)$.
Every graph G admits a perfect cross-cap drawing with $g(G)$ cross-caps.

The Conjectures

Mohar's Conjecture 1 ('07)
Every graph G admits a perfect cross-cap drawing with $g(G)$ cross-caps.

The Conjectures

Mohar's Conjecture 1 ('07)
Every graph G admits a perfect cross-cap drawing with $g(G)$ cross-caps.

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a perfect cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)
Every graph embedded on a non-orientable surface in which loops are non-separating admits a perfect cross-cap drawing.

The Conjectures

Mohar's Conjecture 1 ('07)
Every graph G admits a perfect cross-cap drawing with $g(G)$ cross-caps.

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a perfect cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)
Conjecture 1介
Conjecture 2介
Conjecture 3
Every graph embedded on a non-orientable surface in which loops are non-separating admits a perfect cross-cap drawing.

The Conjectures

Mohar's Conjecture 1 ('07)
Every graph G admits a perfect cross-cap drawing with $g(G)$ cross-caps.

Mohar's (Stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a perfect cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)
Every graph embedded on a non-orientable surface in which loops are non-separating admits a perfect cross-cap drawing.
\rightarrow Schaefer and Štefankovič disprove this.

The Conjectures

Mohar's Conjecture 1 ('07)

Every graph G admits a perfect cross-cap drawing with $g(G)$ cross-caps.

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a perfect cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)
Every graph embedded on a non-orientable surface in which loops are non-separating admits a perfect cross-cap drawing.
\rightarrow Schaefer and Štefankovič disprove this.

Theorem (Schaefer-Štefankovič)

A graph G embeddable on N_{g} admits a cross-cap drawing in which each edge enters each cross-cap at most twice.

The Conjectures

Mohar's Conjecture 1 ('07)

Every graph G admits a perfect cross-cap drawing with $g(G)$ cross-caps.

Mohar's (Stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a perfect cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)
Every graph embedded on a non-orientable surface in which loops are non-separating admits a perfect cross-cap drawing.
\rightarrow We provide a 2-vertex counter example.
\rightarrow Schaefer and Štefankovič disprove this.

Theorem (Schaefer-Štefankovič)

A graph G embeddable on N_{g} admits a cross-cap drawing in which each edge enters each cross-cap at most twice.

The Conjectures

Mohar's Conjecture 1 ('07)

Every graph G admits a perfect cross-cap drawing with $g(G)$ cross-caps.

Mohar's (Stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a perfect cross-cap drawing.

Mohar's (even stronger) Conjecture 3 ('07)
Every graph embedded on a non-orientable surface in which loops are non-separating admits a perfect cross-cap drawing.
\rightarrow We provide a 2-vertex counter example.
\rightarrow Schaefer and Štefankovič disprove this.

Theorem (Schaefer-Štefankovič)

A graph G embeddable on N_{g} admits a cross-cap drawing in which each edge enters each cross-cap at most twice.

Theorem (F.,Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex
- (in the non-orientable case) a signature +1 or -1 associated to each edge

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex
- (in the non-orientable case) a signature +1 or -1 associated to each edge
- Given an embedding scheme, we can compute the faces of the embedding:

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex
- (in the non-orientable case) a signature +1 or -1 associated to each edge
- Given an embedding scheme, we can compute the faces of the embedding:

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex
- (in the non-orientable case) a signature +1 or -1 associated to each edge
- Given an embedding scheme, we can compute the faces of the embedding:

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex
- (in the non-orientable case) a signature +1 or -1 associated to each edge
■ Given an embedding scheme, we can compute the faces of the embedding:

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex

■ (in the non-orientable case) a signature +1 or -1 associated to each edge

- Given an embedding scheme, we can compute the faces of the embedding:

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex

■ (in the non-orientable case) a signature +1 or -1 associated to each edge

- Given an embedding scheme, we can compute the faces of the embedding:

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex

■ (in the non-orientable case) a signature +1 or -1 associated to each edge

- Given an embedding scheme, we can compute the faces of the embedding:

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex

■ (in the non-orientable case) a signature +1 or -1 associated to each edge

- Given an embedding scheme, we can compute the faces of the embedding:

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex

■ (in the non-orientable case) a signature +1 or -1 associated to each edge

- Given an embedding scheme, we can compute the faces of the embedding:

EMBEDDING SCHEMES

- An embedding for a graph, is entirely described by an embedding scheme:
- the cyclic ordering of the edges around the vertex

■ (in the non-orientable case) a signature +1 or -1 associated to each edge

- Given an embedding scheme, we can compute the faces of the embedding:

- A cross-cap drawing of an embedding scheme respects the signatures: each edge with signature +1 (resp. -1) enters even (resp. odd) number of cross-caps.

AN UNEXPECTED CONNECTION

Our main technical tool for our results comes from computational biology.

- The signed reversal distance between two signed words is the minimum number of reversals to go from one to the other one.
■ Very important in computational genomics, computable in polynomial time [Hannenhalli-Pevzner '99].
■ Strong similarities with crosscap drawings, which we leverage in all of our results.

AN UNEXPECTED CONNECTION

Our main technical tool for our results comes from computational biology.

■ The signed reversal distance between two signed words is the minimum number of reversals to go from one to the other one.
■ Very important in computational genomics, computable in polynomial time [Hannenhalli-Pevzner '99].
■ Strong similarities with crosscap drawings, which we leverage in all of our results.

AN UNEXPECTED CONNECTION

Our main technical tool for our results comes from computational biology.

- The signed reversal distance between two signed words is the minimum number of reversals to go from one to the other one.
■ Very important in computational genomics, computable in polynomial time [Hannenhalli-Pevzner '99].
- Strong similarities with crosscap drawings, which we leverage in all of our results.

■ In our words, the Hannenhalli-Pevzner algorithm focuses on counting and handling the cases where the minimum number of signed reversals/crosscaps is different from the non-orientable genus.

From signed reversals To cross-cap drawings

■ In our words, the Hannenhalli-Pevzner algorithm focuses on counting and handling the cases where the minimum number of signed reversals/crosscaps is different from the non-orientable genus.
\rightarrow dealing with these sub-words costs them extra cross-caps:

- Positive block:
- The frames 1 and 4 appear with 14 and 41 order around vertices.

■ all +1 signatures.

- Negative block:
- The frames 1 and 4 appear with 14 around both vertices.
- all -1 signatures.

From signed reversals To cross-cap drawings

■ In our words, the Hannenhalli-Pevzner algorithm focuses on counting and handling the cases where the minimum number of signed reversals/crosscaps is different from the non-orientable genus.

- We prove that almost all of these cases can be handled in a topological setting.

From signed reversals To cross-cap drawings

■ In our words, the Hannenhalli-Pevzner algorithm focuses on counting and handling the cases where the minimum number of signed reversals/crosscaps is different from the non-orientable genus.

- We prove that almost all of these cases can be handled in a topological setting.

The counter example

Mohar's (stronger) Conjecture 2 ('07)

Every loopless graph embedded on a non-orientable surface admits a perfect cross-cap drawing.

Conjecture 2 does not hold:
Theorem (F., Hubard, de Mesmay '23)
There exists a 2-vertex loopless graph embedded on a non-orientable surface that does not admit a perfect cross-cap drawing.

Cross-cap drawings of 2-vertex schemes

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.

In particular:

- Under standard models of random maps, almost all 2-vertex loopless embedded graphs satisfy Conjecture 2.
- The behavior under adding edges is counter-intuitive.

CROSS-CAP DRAWINGS OF 2-VERTEX SCHEMES

Theorem (F., Hubard, de Mesmay '23)

Apart from two exceptional families of graphs, all the 2-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.

Sketch of the proof:
\rightarrow reduce the scheme.

Cross-cap drawings of 2-vertex schemes

Theorem (F., Hubard, de Mesmay '23)
Apart from two exceptional families of graphs, all the 2-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.

Sketch of the proof:
\rightarrow reduce the scheme.

CROSS-CAP DRAWINGS OF 2-VERTEX SCHEMES

Theorem (F., Hubard, de Mesmay '23)
Apart from two exceptional families of graphs, all the 2-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.

Sketch of the proof:
\rightarrow reduce the scheme.

Cross-cap drawings of 2-vertex schemes

```
Theorem (F., Hubard, de Mesmay '23)
```

Apart from two exceptional families of graphs, all the 2-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.

Sketch of the proof:
\rightarrow reduce the scheme.
\rightarrow apply Hannenhalli-Pevzner algorithm.

Cross-cap drawings of 2-vertex schemes

Theorem (F., Hubard, de Mesmay '23)
Apart from two exceptional families of graphs, all the 2-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.

Sketch of the proof:
\rightarrow reduce the scheme.
\rightarrow apply Hannenhalli-Pevzner algorithm.
\rightarrow blow up the cross-caps.

Cross-cap drawings of 2-vertex schemes

Theorem (F., Hubard, de Mesmay '23)
Apart from two exceptional families of graphs, all the 2-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.

Sketch of the proof:
\rightarrow reduce the scheme.
\rightarrow apply Hannenhalli-Pevzner algorithm.
\rightarrow blow up the cross-caps.
\rightarrow complete the drawing.

Cross-cap drawings of 2-vertex schemes

Theorem (F., Hubard, de Mesmay '23)
Apart from two exceptional families of graphs, all the 2-vertex loopless graphs embedded on non-orientable surfaces satisfy Conjecture 2.

Sketch of the proof:
\rightarrow reduce the scheme.
\rightarrow apply Hannenhalli-Pevzner algorithm.
\rightarrow blow up the cross-caps.
\rightarrow complete the drawing.

Conclusion

- Allowing the graph to have more vertices, increases the possibility of having a perfect cross-cap drawing.

\rightarrow Although Mohar's conjectures 2 and 3 are wrong, there is a great chance that conjecture 1 is correct.

Mohar's Conjecture 1 ('07)

For every $\operatorname{graph} G, \operatorname{gcr}(G)=\operatorname{dcr}(G)$.

Conclusion

- Allowing the graph to have more vertices, increases the possibility of having a perfect cross-cap drawing.

\rightarrow Although Mohar's conjectures 2 and 3 are wrong, there is a great chance that conjecture 1 is correct.

Mohar's Conjecture 1 ('07)

For every $\operatorname{graph} G, \operatorname{gcr}(G)=\operatorname{dcr}(G)$.

Thank You!

