Side-Contact Representations with Convex

 Polygons in 3D: New Results for Complete Bipartite Graphs

Contact graphs

Contact graphs

common way to visuzalize graphs:

- nodes are geometric objects
- objects touch exactly when their nodes are adjacent

Contact graphs

common way to visuzalize graphs:

- nodes are geometric objects
- objects touch exactly when their nodes are adjacent

Contact graphs

common way to visuzalize graphs:

- nodes are geometric objects
- objects touch exactly when their nodes are adjacent

Contact graphs

common way to visuzalize graphs:

- nodes are geometric objects
- objects touch exactly when their nodes are adjacent

objects: squares
contact: intersecting boundary

Our model

Our model

- objects are convex polygons in 3d

Our model

- objects are convex polygons in 3d
- objects touch if they share a full common edge (side-contact)

Our model

- objects are convex polygons in 3d
- objects touch if they share a full common edge (side-contact)
- no three polygons can have a common edge

Previous Results [Arseneva et al. '21]

Previous Results [Arseneva et al. '21]

- every hypercube graph can be represented in this model \rightarrow graph edge density can be as high as $\Omega(n \log n)$

Previous Results [Arseneva et al. '21]

- every hypercube graph can be represented in this model
\rightarrow graph edge density can be as high as $\Omega(n \log n)$
- the $K_{5,81}$ has no representation in this model
\rightarrow \#edges is at most $O\left(n^{1.8}\right)$ by Kövári-Sós-Turán theorem

Previous Results [Arseneva et al. '21]

- every hypercube graph can be represented in this model
\rightarrow graph edge density can be as high as $\Omega(n \log n)$
- the $K_{5,81}$ has no representation in this model
\rightarrow \#edges is at most $O\left(n^{1.8}\right)$ by Kövári-Sós-Turán theorem
- the $K_{4,4}$ and the $K_{3,5}$ have a representation in this model

Previous Results [Arseneva et al. '21]

- every hypercube graph can be represented in this model
\rightarrow graph edge density can be as high as $\Omega(n \log n)$
- the $K_{5,81}$ has no representation in this model
\rightarrow \#edges is at most $O\left(n^{1.8}\right)$ by Kövári-Sós-Turán theorem
- the $K_{4,4}$ and the $K_{3,5}$ have a representation in this model
- all planar graphs can be represented in this model, even in 2d

Previous Results [Arseneva et al. '21]

- every hypercube graph can be represented in this model
\rightarrow graph edge density can be as high as $\Omega(n \log n)$
- the $K_{5,81}$ has no representation in this model
\rightarrow \#edges is at most $O\left(n^{1.8}\right)$ by Kövári-Sós-Turán theorem
- the $K_{4,4}$ and the $K_{3,5}$ have a representation in this model
- all planar graphs can be represented in this model, even in 2d
- (related) if we consider nonconvex polygons or corner-corner contacts [Evans et al. '19], all graphs can be represented

The $K_{3,250}$ has no side-contact realization with convex polygons in 3d
[New Theorem
The $K_{3,250}$ has no side-contact realization with convex polygons in 3d
preliminary ideas (2d)

The $K_{3,250}$ has no side-contact realization with convex polygons in 3d
preliminary ideas (2d)

convex set of segments in 2d
[New Theorem
The $K_{3,250}$ has no side-contact realization with convex polygons in 3d
preliminary ideas (2d)
segment
intersection
point (si-point)
convex set of segments in 2d
[New Theorem
The $K_{3,250}$ has no side-contact realization with convex polygons in 3d
preliminary ideas (2d)
convex set of segments in 2d
consecutive segment intersection point (csi-point)

Observations in 2d

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points

Observations in 2d

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points

Observations in 2d

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points

Observations in 2d

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points

Observations in 2d

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points
- the triangle between a csi-point and its segments contains all si-points of the segments "in between"

Observations in 2d

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points
- the triangle between a csi-point and its segments contains all si-points of the segments "in between"

Observations in 2d

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points
- the triangle between a csi-point and its segments contains all si-points of the segments "in between"

Observations in 2d

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points
- the triangle between a csi-point and its segments contains all si-points of the segments "in between"

Back to 3d

Back to 3d

- assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons

Back to 3d

- assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons
- the suppoting planes of the 3 red polygons define an arrangement with 8 octants

Back to 3d

- assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons
- the suppoting planes of the 3 red polygons define an arrangement with 8 octants

every blue polygon has to lie in one octant

Back to 3d

- assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons
- the suppoting planes of the 3 red polygons define an arrangement with 8 octants

every blue polygon has to lie in one octant only 5 octants can share a piece of all 3 red polygons

Back to 3d

- assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons
- the suppoting planes of the 3 red polygons define an arrangement with 8 octants

every blue polygon has to lie in one octant only 5 octants can share a piece of all 3 red polygons
there is one octant \mathcal{C} with
≥ 50 blue polygons

Applying the 2d Ideas

supporting plane of 1st red polygon

Applying the 2d Ideas

supporting plane of 1st red polygon

Applying the 2d Ideas

supporting plane of 1st red polygon
ignore some blue
polygons that have a side on an edge of $\mathcal{C} \rightarrow 44$ left consider every 11th segment where blue und red polygons touch

Applying the 2d Ideas

supporting plane of 1st red polygon
ignore some blue
polygons that have a side on an edge of $\mathcal{C} \rightarrow 44$ left
consider every 11th segment where blue und red polygons touch one csi-point lies in the the gray area

Applying the 2d Ideas

supporting plane of 1 st red polygon
ignore some blue polygons that have a side on an edge of $\mathcal{C} \rightarrow 44$ left
consider every 11th segment where blue und red polygons touch one csi-point lies in the the gray area also all si-points of these 12 segments lies in the the gray area

Applying the 2d Ideas

supporting plane of 1 st red polygon
ignore some blue polygons that have a side on an edge of $\mathcal{C} \rightarrow 44$ left
consider every 11th segment where blue und red polygons touch one csi-point lies in the the gray area also all si-points of these 12 segments lies in the the gray area

Again back to 3d

Again back to 3d

- we find two blue polygons b and b^{\prime} in \mathcal{C}, with side e_{i} / e_{i}^{\prime} on the bounding face f_{i} of $\mathcal{C} \ldots$

Again back to 3d

- we find two blue polygons b and b^{\prime} in \mathcal{C}, with side e_{i} / e_{i}^{\prime} on the bounding face f_{i} of $\mathcal{C} \ldots$
- ... such that the si-point of e_{i} and e_{i}^{\prime} lies in the interior of f_{i}

Again back to 3d

- we find two blue polygons b and b^{\prime} in \mathcal{C}, with side e_{i} / e_{i}^{\prime} on the bounding face f_{i} of $\mathcal{C} \ldots$
- ... such that the si-point of e_{i} and e_{i}^{\prime} lies in the interior of f_{i}

the supporting planes of b_{i} and b_{i}^{\prime} intersect in the three si-points
(not on a line)
\rightarrow they coincide

Again back to 3d

- we find two blue polygons b and b^{\prime} in \mathcal{C}, with side e_{i} / e_{i}^{\prime} on the bounding face f_{i} of $\mathcal{C} \ldots$
- ... such that the si-point of e_{i} and e_{i}^{\prime} lies in the interior of f_{i}

the supporting planes of b_{i} and b_{i}^{\prime} intersect in the three si-points (not on a line)
\rightarrow they coincide
\rightarrow all red polygons and thus all blue polygons are collinear, only possible for planar graphs \rightarrow contradiction

Again back to 3d

- we find two blue polygons b and b^{\prime} in \mathcal{C}, with side e_{i} / e_{i}^{\prime} on the bounding face f_{i} of $\mathcal{C} \ldots$
- ... such that the si-point of e_{i} and e_{i}^{\prime} lies in the interior of f_{i}

the supporting planes of b_{i} and b_{i}^{\prime} intersect in the three si-points
(not on a line)
\rightarrow they coincide
\rightarrow all red polygons and thus all blue polygons are collinear, only possible for planar graphs \rightarrow contradiction
\rightarrow improved bound on the edge density: $O\left(n^{5 / 3}\right)$

[New Theorem
 The $K_{3,8}$ has a side-contact realization with convex polygons in 3d

Idea to exploit: find a good corner-contact-representation

The $K_{3,8}$ has a side-contact realization with convex polygons in 3d

Idea to exploit: find a good corner-contact-representation

all three red polygons have the
blue polygon on one side

The $K_{3,8}$ has a side-contact realization with convex polygons in 3d

Idea to exploit: find a good corner-contact-representation

all three red polygons have the
blue polygon on one side

A good corner-contact realization of the $K_{3,8}$

A good corner-contact realization of the $K_{3,8}$

A good corner-contact realization of the $K_{3,8}$

exact coordinates and script to check for the "good" -property are in the arxiv-version

