Side-Contact Representations with Convex Polygons in 3D: New Results for Complete Bipartite Graphs

common way to visuzalize graphs:

- nodes are geometric objects
- objects touch exactly when their nodes are adjacent

common way to visuzalize graphs:

- nodes are geometric objects
- objects touch exactly when their nodes are adjacent

common way to visuzalize graphs:

- nodes are geometric **objects**
- objects **touch** exactly when their nodes are adjacent

common way to visuzalize graphs:

- nodes are geometric **objects**
- objects **touch** exactly when their nodes are adjacent

objects: squares
contact: intersecting boundary

• objects are convex polygons in 3d

- objects are convex polygons in 3d
- objects touch if they share a full common edge (side-contact)

- objects are convex polygons in 3d
- objects touch if they share a full common edge (side-contact)
- no three polygons can have a common edge

• every hypercube graph can be represented in this model

ightarrow graph edge density can be as high as $\Omega(n \log n)$

• every hypercube graph can be represented in this model \rightarrow graph edge density can be as high as $\Omega(n \log n)$

- the $K_{5,81}$ has no representation in this model
- \rightarrow #edges is at most $O(n^{1.8})$ by Kővári–Sós–Turán theorem

• every hypercube graph can be represented in this model \rightarrow graph edge density can be as high as $\Omega(n \log n)$

• the $K_{5,81}$ has no representation in this model $\rightarrow \#$ edges is at most $O(n^{1.8})$ by Kővári–Sós–Turán theorem

• the $K_{4,4}$ and the $K_{3,5}$ have a representation in this model

• every hypercube graph can be represented in this model \rightarrow graph edge density can be as high as $\Omega(n \log n)$

- the $K_{5,81}$ has no representation in this model $\rightarrow \#$ edges is at most $O(n^{1.8})$ by Kővári–Sós–Turán theorem
 - the $K_{4,4}$ and the $K_{3,5}$ have a representation in this model
 - all planar graphs can be represented in this model, even in 2d

• every hypercube graph can be represented in this model \rightarrow graph edge density can be as high as $\Omega(n \log n)$

- the $K_{5,81}$ has no representation in this model $\rightarrow \#$ edges is at most $O(n^{1.8})$ by Kővári–Sós–Turán theorem
 - the $K_{4,4}$ and the $K_{3,5}$ have a representation in this model
 - all planar graphs can be represented in this model, even in 2d
 - (related) if we consider nonconvex polygons or corner-corner contacts [Evans et al. '19], all graphs can be represented

New Theorem The $K_{3,250}$ has no side-contact realization with convex polygons in 3d New Theorem
 The K_{3,250} has no side-contact realization with convex polygons in 3d

preliminary ideas (2d)

New Theorem — The $K_{3,250}$ has no side-contact realization with convex polygons in 3d

preliminary ideas (2d)

New Theorem
 The K_{3,250} has no side-contact realization with convex polygons in 3d

preliminary ideas (2d)

convex set of segments in 2d

consecutive segment intersection point (csi-point)

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points
- the triangle between a csi-point and its segments contains all si-points of the segments "in between"

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points
- the triangle between a csi-point and its segments contains all si-points of the segments "in between"

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points
- the triangle between a csi-point and its segments contains all si-points of the segments "in between"

- by cutting away 2 halfspaces from the convex set of segments we can remove at most 3 csi points
- the triangle between a csi-point and its segments contains all si-points of the segments "in between"

• assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons

- assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons
- the suppoting planes of the 3 red polygons define an arrangement with 8 octants

- assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons
- the suppoting planes of the 3 red polygons define an arrangement with 8 octants

every blue polygon has to lie in one octant

- assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons
- the suppoting planes of the 3 red polygons define an arrangement with 8 octants

every blue polygon has to lie in one octant

only 5 octants can share a piece of all 3 red polygons

- assume we have a realization of $K_{3,250}$ with 3 red and 250 blue polygons
- the suppoting planes of the 3 red polygons define an arrangement with 8 octants

every blue polygon has to lie in one octant

only 5 octants can share a piece of all 3 red polygons

there is one octant \mathcal{C} with \geq 50 blue polygons

Applying the 2d Ideas

ignore some blue polygons that have a side on an edge of $C \rightarrow 44$ left consider every 11th segment where blue und red polygons touch

ignore some blue polygons that have a side on an edge of $\mathcal{C}
ightarrow$ 44 left consider every 11th segment where blue und red polygons touch one csi-point lies in the the gray area

supporting plane of 1st red polygon

ignore some blue polygons that have a side on an edge of $\mathcal{C}
ightarrow$ 44 left consider every 11th segment where blue und red polygons touch one csi-point lies in the the gray area also all si-points of these 12 segments lies in the the gray area

supporting plane of 1st red polygon

ignore some blue polygons that have a side on an edge of $\mathcal{C}
ightarrow$ 44 left consider every 11th segment where blue und red polygons touch one csi-point lies in the the gray area also all si-points of these 12 segments lies in the the gray area

we find two blue polygons b and b' in C, with side e_i/e'_i on the bounding face f_i of C

- we find two blue polygons b and b' in C, with side e_i/e'_i on the bounding face f_i of C
- ... such that the si-point of e_i and e'_i lies in the interior of f_i

- we find two blue polygons b and b' in C, with side e_i/e'_i on the bounding face f_i of C
- ... such that the si-point of e_i and e'_i lies in the interior of f_i

the supporting planes of b_i and b'_i intersect in the three si-points (not on a line) \rightarrow they coincide

- we find two blue polygons b and b' in C, with side e_i/e'_i on the bounding face f_i of C
- ... such that the si-point of e_i and e'_i lies in the interior of f_i

the supporting planes of b_i and b'_i intersect in the three si-points (not on a line) \rightarrow they coincide

 \rightarrow all red polygons and thus all blue polygons are collinear, only possible for planar graphs \rightarrow contradiction

- we find two blue polygons b and b' in C, with side e_i/e'_i on the bounding face f_i of C
- ... such that the si-point of e_i and e'_i lies in the interior of f_i

the supporting planes of b_i and b'_i intersect in the three si-points (not on a line) \rightarrow they coincide

 \rightarrow all red polygons and thus all blue polygons are collinear, only possible for planar graphs \rightarrow contradiction

 \rightarrow improved bound on the edge density: $O(n^{5/3})$

New Theorem
 The K_{3,8} has a side-contact realization with convex
 polygons in 3d

New Theorem The $K_{3,8}$ has a side-contact realization with convex polygons in 3d

Idea to exploit: find a good corner-contact-representation

New Theorem The $K_{3,8}$ has a side-contact realization with convex polygons in 3d

Idea to exploit: find a good corner-contact-representation

all three red polygons have the blue polygon on one side

New Theorem The $K_{3,8}$ has a side-contact realization with convex polygons in 3d

Idea to exploit: find a good corner-contact-representation

move the blue supporting plane down

all three red polygons have the blue polygon on one side

A good corner-contact realization of the $K_{3,8}$

A good corner-contact realization of the $K_{3,8}$

A good corner-contact realization of the $K_{3,8}$

exact coordinates and script to check for the "good"-property are in the arxiv-version