Three Edge-disjoint Plane Spanning Paths in a Point Set

Philipp Kindermann, Jan Kratochvil, Beppe Liotta, Pavel Valtr

Graph Drawing 2023
Isola delle Femmine, September 21, 2023
S is a set of n points in the plane, no three in a line (general position)
S is a set of n points in the plane, no three in a line (general position) defines a complete geometric graph (edges are straight-line segments)

S is a set of n points in the plane, no three in a line (general position) defines a complete geometric graph (edges are straight-line segments)

Goal: Packing edge-disjoint plane spanning subgraphs

Question: How many edge-disjoint plane spanning paths can we pack in a given complete geometric graph?

Question: How many edge-disjoint plane spanning paths can we pack in a given complete geometric graph?

Question: How many edge-disjoint plane spanning paths can we pack in a given complete geometric graph?

Our question: How many edge-disjoint plane spanning paths can we ALWAYS find in ANY given complete geometric graph with n points?

Packing edge-disjoint plane spanning subgraphs in complete geometric graphs

Known:

Folklore - 1 path
Abellanas et al. [1999] - zig-zag path

Aichholzer et al. [2017] - \sqrt{n} trees (types not prescribed) Aichholzer et al. [2017] - 2 paths

Packing edge-disjoint plane spanning subgraphs in complete geometric graphs

Known:

Folklore - 1 path
Abellanas et al. [1999] - zig-zag path
Aichholzer et al. [2017] - $\sqrt{ } n$ trees (types not prescribed)
Aichholzer et al. [2017] - 2 paths

Our results:

- 2 paths with prescribed starting vertices (on the boundary of conv(S))
- 3 paths Theorem: Every set of $|S| \geq 10$ points admits 3 edge-disjoint plane spanning paths.

Theorem: Every set S of ≥ 10 points admits 3 edge-disjoint plane spanning paths.

Idea of the proof: Prove that every S is of at least one of the following three types

Theorem: Every set S of ≥ 10 points admits 3 edge-disjoint plane spanning paths.

Idea of the proof: Prove that every S is of at least one of the following three types

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

1 Path

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Abellanas [1999]: For every balanced separation (A, B) of S, there exists a zig-zag path starting in a bridged vertex of the larger part.

Remark: All steps of the proof were constructive. Thus given a set S of at least 10 points, we can construct 3 edge-disjoint plane spanning paths for S in polynomial time.

Theorem 2: Let P and Q be two (not necessarily distinct) points of S, lying on the boundary of $\operatorname{conv}(S)$, and let $|S| \geq 5$. Then S admits 2 edge-disjoint plane spanning paths, one starting in P, the other one starting in Q, and none of them using the edge $P Q$ (in case P and Q are distinct). Proof: Case 1, $P \neq Q$.
a) Subcase $|S|$ odd or
$P Q$ not a halving line.

b) Subcase $|S|$ even and $P Q$ is a halving line and $|A(P) \cup A(Q)| \geq 3$.

Theorem: Every set of $|S| \geq 10$ points admits 3 edge-disjoint plane spanning paths.

Proof:

Case C. S is in the wheel position.
An ad hoc construction shows that S has $(n-2) / 2 \geq 3$ edge-disjoint plane spanning paths.

NOT FOR SALE (Sorry)!

ONLY AS A GIFT!

ONLY AS A GIFT!

UPOZORNĚNÍ!

První praní je možné nejdříve po třech dnech po převzetí potištěných oděvů, tehdy je potisk dostatečně vytvrzen.
Trička perte na maximálně $40^{\circ} \mathrm{C}$, žehlete dle pokynů na vinětě trička, zajistíte tak dlouhou životnost potisku.
Nedoporučujeme používat sušičku.
Děkujeme za Vaší přízeň a těšíme se na další spolupráci.

Tým tiskárny F\&F

