Decomposition of Geometric Graphs into Star-Forests (Joint work with J. Pach and P. Schnider)

Morteza Saghafian

ISTA, Klosterneuburg, Austria

September 2023

Table of Contents

1 Background

- 2 Book Star-Arborocity of K_n
- 3 Geometric Star-Arboricity of K_n
- 4 Abstract Setting
- 5 Open Problems

Table of Contents

Background

- 2 Book Star-Arborocity of *K_n*
- 3 Geometric Star-Arboricity of *K_n*
- 4 Abstract Setting
- 5 Open Problems

Decompose the edges of graph G into minimum number of subgraphs

 $\bullet \ \mathsf{Planar} \longrightarrow \mathsf{Thickness}$

Decompose the edges of graph G into minimum number of subgraphs

- Planar \longrightarrow Thickness
- $\bullet \ \ \mathsf{Forest} \longrightarrow \mathsf{Arboricity}$

Decompose the edges of graph G into minimum number of subgraphs

- Planar \longrightarrow Thickness
- Forest \longrightarrow Arboricity
- Star-forest \longrightarrow Star-Arboricity

Decompose the edges of graph G into minimum number of subgraphs

- Planar \longrightarrow Thickness
- Forest \longrightarrow Arboricity
- Star-forest \longrightarrow Star-Arboricity

Decompose the edges of graph G into minimum number of subgraphs

- Planar \longrightarrow Thickness
- Forest \longrightarrow Arboricity
- Star-forest \longrightarrow Star-Arboricity

• Covering \iff Decomposition

Parameter	Abstract	Geometric	Convex (Book)
Thickness	$\theta(K_n) = \lfloor \frac{n+7}{6} \rfloor ([1])$	$\left\lceil \frac{n}{5.646} \right\rceil \leq \overline{ heta}(K_n) \leq \left\lceil \frac{n}{4} \right\rceil$ ([2])	$bt(K_n) = \lceil \frac{n}{2} \rceil$ ([3])
Arboricity	$a(K_n) = \lceil \frac{n}{2} \rceil$ ([3])	$\bar{a}(K_n) = \lceil \frac{n}{2} \rceil$ ([3])	$ba(K_n) = \lceil \frac{n}{2} \rceil$ ([3])
Star-arboricity	$sa(K_n) = \lceil \frac{n}{2} \rceil + 1$ ([4])	$ar{sa}(K_n) \leq n-1$	$\mathit{bsa}(\mathit{K_n}) \leq \mathit{n-1}$

- [1] Beineke, Harary (1965) Alekseev, Gonchakov (1985)
- [2] Dillencourt, Eppstein, Hirschberg (2000)
- [3] Bernhart, Kainen (1979)
- [4] Akiyama, Kano (1985)

Parameter	Abstract	Geometric	Convex (Book)
Thickness	$\theta(K_n) = \lfloor \frac{n+7}{6} \rfloor ([1])$	$\left\lceil \frac{n}{5.646} \right\rceil \leq \overline{ heta}(K_n) \leq \left\lceil \frac{n}{4} \right\rceil$ ([2])	$bt(K_n) = \lceil \frac{n}{2} \rceil$ ([3])
Arboricity	$a(K_n) = \lceil \frac{n}{2} \rceil$ ([3])	$\bar{a}(K_n) = \lceil \frac{n}{2} \rceil$ ([3])	$ba(K_n) = \lceil \frac{n}{2} \rceil$ ([3])
Star-arboricity	$sa(K_n) = \lceil \frac{n}{2} \rceil + 1$ ([4])	$\bar{sa}(K_n) \leq \lceil rac{3n}{4} ceil$	$bsa(K_n) = n - 1$

- [1] Beineke, Harary (1965) Alekseev, Gonchakov (1985)
- [2] Dillencourt, Eppstein, Hirschberg (2000)
- [3] Bernhart, Kainen (1979)
- [4] Akiyama, Kano (1985)
- Pach, Saghafian, Schnider (2023)

Geometric Star-Arboricity of K_n

4 Abstract Setting

5 Open Problems

Complete Convex Geometric Graph

- *n* points in convex position
- Complete geometric graph

Decomposition into Star-Forests

• Decomposition into plane star-forests

Decomposition into Star-Forests

- Decomposition into plane star-forests
- Fewer than n-1? [Dujmović, Wood (2007)]

Theorem (Book Star-Arboricity of K_n)

The complete convex geometric graph with n vertices cannot be decomposed into fewer than n - 1 plane star-forests.

Approach:

- Recolor the edges wisely.
- Make sure the constraints remain satisfied.
 - Each color is a star-forest
 - Each color is crossing-free
 - All the edges are covered
- End up with a color being a single star.
- Remove and induction!

• Vertices: P_1, P_2, \cdots, P_n in clockwise order

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

크

- Vertices: P_1, P_2, \cdots, P_n in clockwise order
- Indices modulo n, so $P_{n+1} = P_1, P_{n+2} = P_2$, etc.

э

- Vertices: P_1, P_2, \cdots, P_n in clockwise order
- Indices modulo n, so $P_{n+1} = P_1, P_{n+2} = P_2$, etc.
- k-edge: $P_a P_{a+k}$

э

- Vertices: P_1, P_2, \cdots, P_n in clockwise order
- Indices modulo n, so $P_{n+1} = P_1, P_{n+2} = P_2$, etc.
- **k-edge**: $P_a P_{a+k}$
- A k-edge $P_a P_{a+k}$ is **supported** if it belongs to one of the star-forests along with either all edges $P_a P_{a+1}, P_a P_{a+2}, \ldots, P_a P_{a+k-1}$, or all edges $P_{a+1}P_{a+k}, P_{a+2}P_{a+k}, \ldots, P_{a+k-1}P_{a+k}$.

• The idea is to recolor the edges step by step in order to make all the edges supported.

- The idea is to recolor the edges step by step in order to make all the edges supported.
 - 2-edges

- The idea is to recolor the edges step by step in order to make all the edges supported.
 - 2-edges
 - 2-edges, 3-edges

- The idea is to recolor the edges step by step in order to make all the edges supported.
 - 2-edges
 - 2-edges, 3-edges
 - 2-edges, 3-edges, ..., k-edges

э

- The idea is to recolor the edges step by step in order to make all the edges supported.
 - 2-edges
 - 2-edges, 3-edges
 - 2-edges, 3-edges, ..., k-edges
- Suppose that the complete convex geometric graph K_n can be covered by t crossing-free star-forests, for some positive integer t. Then, for every k, 1 < k < n, there exists a covering of K_n by t crossing-free star-forests F₁, F₂,..., F_t such that every k'-edge with 1 < k' ≤ k is supported.
- Induction on k

Induction on k

Case 1:

Induction on k

Case 2:

Induction on k

- In the end, the (n-1)-edge P_1P_n is supported.
- It means at least one star-forest is a single star.
- Remove it along with its center (either P_1 or P_n).
- Induction on *n*. P_1 P_n Fewer than n-1 is impossible!

- Book Star-Arborocity of K_n
- 3 Geometric Star-Arboricity of K_n
 - Abstract Setting

5 Open Problems

Theorem (Geometric Star-Arboricity of K_n)

There is a complete geometric graph with n vertices that can be decomposed into $\lceil \frac{3n}{4} \rceil$ plane star-forests.

Theorem (Geometric Star-Arboricity of K_n)

There is a complete geometric graph with n vertices that can be decomposed into $\lceil \frac{3n}{4} \rceil$ plane star-forests.

 Example: Four blobs
 ≈ ⁿ/₄ points in each in **non-convex** position

Theorem (Geometric Star-Arboricity of K_n)

There is a complete geometric graph with n vertices that can be decomposed into $\lceil \frac{3n}{4} \rceil$ plane star-forests.

 Example: Four blobs
 ≈ ⁿ/₄ points in each in **non-convex** position

Table of Contents

Background

- Book Star-Arborocity of K_n
- 3 Geometric Star-Arboricity of Kn
- 4 Abstract Setting

5 Open Problems

• k-Star-Forest: at most k disjoint stars

Theorem (2-Star-Forests)

The complete graph with n > 3 vertices can be decomposed into $\left\lceil \frac{3n}{4} \right\rceil$ 2-star-forests. This bound cannot be improved.

• k-Star-Forest: at most k disjoint stars

Theorem (2-Star-Forests)

The complete graph with n > 3 vertices can be decomposed into $\left\lceil \frac{3n}{4} \right\rceil$ 2-star-forests. This bound cannot be improved.

Conjecture (k-Star-Forests)

For any $n \ge k \ge 2$, the number of k-star-forests needed to cover the complete graph K_n is at least $\left\lceil \frac{(k+1)n}{2k} \right\rceil$.

Table of Contents

Background

- Book Star-Arborocity of K_n
- 3 Geometric Star-Arboricity of K_n
- 4 Abstract Setting

5 Open Problems

Open Problems

- (Geometric Star-Arboricity) Is there any complete geometric graph on *n* vertices that can be decomposed into fewer than
 ³ⁿ/₄ plane star-forests?
- (Abstract k-Star-Arboricity) Is it true that for any n ≥ k ≥ 2, we need at least [(k+1)n/2k] k-star-forests to cover the complete graph K_n?
 Page leaving Couplet
- 8 Recoloring Graph

Thank you!

Morteza Saghafian

< A□
 < A□
 < A□

æ