Decomposition of Geometric Graphs into Star-Forests

(Joint work with J. Pach and P. Schnider)

Morteza Saghafian

ISTA, Klosterneuburg, Austria
September 2023

Institute of
Science and
Technology
Austria
(1) Background
(2) Book Star-Arborocity of K_{n}
(3) Geometric Star-Arboricity of K_{n}

4 Abstract Setting
(5) Open Problems

Table of Contents

(1) Background
(2) Book Star-Arborocity of K_{n}
(3) Geometric Star-Arboricity of K_{n}
(4) Abstract Setting
(5) Open Problems

Background

Decompose the edges of graph G into minimum number of subgraphs

- Planar \longrightarrow Thickness

Background

Decompose the edges of graph G into minimum number of subgraphs

- Planar \longrightarrow Thickness
- Forest \longrightarrow Arboricity

Background

Decompose the edges of graph G into minimum number of subgraphs

- Planar \longrightarrow Thickness
- Forest \longrightarrow Arboricity
- Star-forest \longrightarrow Star-Arboricity

Background

Decompose the edges of graph G into minimum number of subgraphs

- Planar \longrightarrow Thickness
- Forest \longrightarrow Arboricity
- Star-forest \longrightarrow Star-Arboricity
- Abstract, Geometric, Convex

Background

Decompose the edges of graph G into minimum number of subgraphs

- Planar \longrightarrow Thickness
- Forest \longrightarrow Arboricity
- Star-forest \longrightarrow Star-Arboricity
- Abstract, Geometric, Convex
- Covering \Longleftrightarrow Decomposition

Background

Parameter	Abstract	Geometric	Convex (Book)
Thickness	$\theta\left(K_{n}\right)=\left\lfloor\frac{n+7}{6}\right\rfloor([1])$	$\left\lceil\frac{n}{5.646}\right\rceil \leq \bar{\theta}\left(K_{n}\right) \leq\left\lceil\frac{n}{4}\right\rceil([2])$	$b t\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil([3])$
Arboricity	$a\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil([3])$	$\bar{a}\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil([3])$	$b a\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil([3])$
Star-arboricity	$s a\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1([4])$	$\overline{s a}\left(K_{n}\right) \leq n-1$	$b s a\left(K_{n}\right) \leq n-1$

- [1] Beineke, Harary (1965) - Alekseev, Gonchakov (1985)
- [2] Dillencourt, Eppstein, Hirschberg (2000)
- [3] Bernhart, Kainen (1979)
- [4] Akiyama, Kano (1985)

Background

Parameter	Abstract	Geometric	Convex (Book)
Thickness	$\theta\left(K_{n}\right)=\left\lfloor\frac{n+7}{6}\right\rfloor(\lceil 1])$	$\left\lceil\frac{n}{5.646}\right\rceil \leq \bar{\theta}\left(K_{n}\right) \leq\left\lceil\frac{n}{4}\right\rceil([2])$	$b t\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil([3])$
Arboricity	$a\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil([3])$	$\bar{a}\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil([3])$	$b a\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil([3])$
Star-arboricity	$s a\left(K_{n}\right)=\left\lceil\frac{n}{2}\right\rceil+1([4])$	$\overline{s a}\left(K_{n}\right) \leq\left\lceil\frac{3 n}{4}\right\rceil$	$b s a\left(K_{n}\right)=n-1$

- [1] Beineke, Harary (1965) - Alekseev, Gonchakov (1985)
- [2] Dillencourt, Eppstein, Hirschberg (2000)
- [3] Bernhart, Kainen (1979)
- [4] Akiyama, Kano (1985)
- Pach, Saghafian, Schnider (2023)

Table of Contents

(1) Background
(2) Book Star-Arborocity of K_{n}
(3) Geometric Star-Arboricity of K_{n}
(4) Abstract Setting
(5) Open Problems

Complete Convex Geometric Graph

－n points in convex position
－Complete geometric graph

Decomposition into Star-Forests

- Decomposition into plane star-forests

Decomposition into Star-Forests

- Decomposition into plane star-forests
- Fewer than $n-1$? [Dujmović, Wood (2007)]

Book Star-Arborocity

Theorem (Book Star-Arboricity of K_{n})

The complete convex geometric graph with n vertices cannot be decomposed into fewer than $n-1$ plane star-forests.

Approach:

- Recolor the edges wisely.
- Make sure the constraints remain satisfied.
- Each color is a star-forest
- Each color is crossing-free
- All the edges are covered
- End up with a color being a single star.
- Remove and induction!

Supported Edges

- Vertices: $P_{1}, P_{2}, \cdots, P_{n}$ in clockwise order

Supported Edges

- Vertices: $P_{1}, P_{2}, \cdots, P_{n}$ in clockwise order
- Indices modulo n, so $P_{n+1}=P_{1}, P_{n+2}=P_{2}$, etc.

Supported Edges

- Vertices: $P_{1}, P_{2}, \cdots, P_{n}$ in clockwise order
- Indices modulo n, so $P_{n+1}=P_{1}, P_{n+2}=P_{2}$, etc.
- k-edge: $P_{a} P_{a+k}$

Supported Edges

- Vertices: $P_{1}, P_{2}, \cdots, P_{n}$ in clockwise order
- Indices modulo n, so $P_{n+1}=P_{1}, P_{n+2}=P_{2}$, etc.
- k-edge: $P_{a} P_{a+k}$
- A k-edge $P_{a} P_{a+k}$ is supported if it belongs to one of the star-forests along with either all edges $P_{a} P_{a+1}, P_{a} P_{a+2}, \ldots, P_{a} P_{a+k-1}$, or all edges $P_{a+1} P_{a+k}, P_{a+2} P_{a+k}, \ldots, P_{a+k-1} P_{a+k}$.

Recoloring Process

- The idea is to recolor the edges step by step in order to make all the edges supported.

Recoloring Process

- The idea is to recolor the edges step by step in order to make all the edges supported.
- 2-edges

Recoloring Process

- The idea is to recolor the edges step by step in order to make all the edges supported.
- 2-edges
- 2-edges, 3-edges

Recoloring Process

- The idea is to recolor the edges step by step in order to make all the edges supported.
- 2-edges
- 2-edges, 3 -edges
- 2-edges, 3-edges, ..., k-edges

Recoloring Process

－The idea is to recolor the edges step by step in order to make all the edges supported．
－2－edges
－2－edges，3－edges
－2－edges，3－edges，．．．，k－edges
－Suppose that the complete convex geometric graph K_{n} can be covered by t crossing－free star－forests，for some positive integer t ． Then，for every $k, 1<k<n$ ，there exists a covering of K_{n} by t crossing－free star－forests $F_{1}, F_{2}, \ldots, F_{t}$ such that every k^{\prime}－edge with $1<k^{\prime} \leq k$ is supported．
－Induction on k

Induction on k

Case 1:

Induction on k

Case 2:

Induction on k

- In the end, the ($n-1$)-edge $P_{1} P_{n}$ is supported.
- It means at least one star-forest is a single star.
- Remove it along with its center (either P_{1} or P_{n}).
- Induction on n.

Fewer than $n-1$ is impossible!

Table of Contents

(1) Background
(2) Book Star-Arborocity of K_{n}
(3) Geometric Star-Arboricity of K_{n}
(4) Abstract Setting
(5) Open Problems

Non-convex Position

Theorem (Geometric Star-Arboricity of K_{n})
There is a complete geometric graph with n vertices that can be decomposed into $\left\lceil\frac{3 n}{4}\right\rceil$ plane star-forests.

Non－convex Position

Theorem（Geometric Star－Arboricity of K_{n} ）

There is a complete geometric graph with n vertices that can be decomposed into $\left\lceil\frac{3 n}{4}\right\rceil$ plane star－forests．
－Example：Four blobs $\approx \frac{n}{4}$ points in each in non－convex position

Non-convex Position

Theorem (Geometric Star-Arboricity of K_{n})
There is a complete geometric graph with n vertices that can be decomposed into $\left\lceil\frac{3 n}{4}\right\rceil$ plane star-forests.

- Example: Four blobs $\approx \frac{n}{4}$ points in each in non-convex position

Table of Contents

(1) Background
(2) Book Star-Arborocity of K_{n}
(3) Geometric Star-Arboricity of K_{n}
4) Abstract Setting
(5) Open Problems

Abstract Setting

- k-Star-Forest: at most k disjoint stars

Theorem (2-Star-Forests)

The complete graph with $n>3$ vertices can be decomposed into $\left\lceil\frac{3 n}{4}\right\rceil$ 2 -star-forests. This bound cannot be improved.

Abstract Setting

－k－Star－Forest：at most k disjoint stars

Theorem（2－Star－Forests）

The complete graph with $n>3$ vertices can be decomposed into $\left\lceil\frac{3 n}{4}\right\rceil$ 2 －star－forests．This bound cannot be improved．

Conjecture（ k－Star－Forests）

For any $n \geq k \geq 2$ ，the number of k－star－forests needed to cover the complete graph K_{n} is at least $\left\lceil\frac{(k+1) n}{2 k}\right\rceil$ ．

Table of Contents

(1) Background
(2) Book Star-Arborocity of K_{n}
(3) Geometric Star-Arboricity of K_{n}
(4) Abstract Setting
(5) Open Problems

Open Problems

（1）（Geometric Star－Arboricity）Is there any complete geometric graph on n vertices that can be decomposed into fewer than $\left\lceil\frac{3 n}{4}\right\rceil$ plane star－forests？
（2）（Abstract k－Star－Arboricity）Is it true that for any $n \geq k \geq 2$ ，we need at least $\left\lceil\frac{(k+1) n}{2 k}\right\rceil k$－star－forests to cover the complete graph K_{n} ？
（3）Recoloring Graph

Thank you!

Thank you!

