

Cops and Robbers on 1-Planar Graphs

Stephane Durocher, Shahin Kamali, **Myroslav Kryven**, Fengyi Liu, Amirhossein Mashghdoust, Avery Miller, Pouria Zamani Nezhad, Ikaro Penha Costa, Timothy Zapp

September, 2023

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 - Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 R can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 Cs catch R or
 - **R** can move indefinitely.

Cops and **Robber ()** is a game on a graph such that

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 - Cs catch R or
 - **R** can move indefinitely.

The cop number c(G) is the minimum # of **Cs** to catch **R**.

Cops and **Robber** is a game on a graph such that

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either Cs catch R or
 - **R** can move indefinitely.

a path has cop number 1

The cop number c(G) is the minimum # of Cs to catch **R**.

Cops and **Robber** is a game on a graph such that

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 - Cs catch R or
 - **R** can move indefinitely.

a tree has cop number 1

The cop number c(G) is the minimum # of Cs to catch **R**.

Cops and **Robber ()** is a game on a graph such that

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 - Cs catch R or
 - **R** can move indefinitely.

The cop number c(G) is the minimum # of **Cs** to catch **R**.

a cycle has cop number 2

Cops and **Robber ()** is a game on a graph such that

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 - Cs catch R or
 - **R** can move indefinitely.

a cycle has cop number 2

The cop number c(G) is the minimum # of **Cs** to catch **R**. [Robertson and Seymour, '84]

- variants generalize treewidth, treedepth, flip-width, ... [Toruńczyk, 2023]

Cops and **Robber ()** is a game on a graph such that

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 - Cs catch R or
 - **R** can move indefinitely.

a cycle has cop number 2

The cop number c(G) is the minimum # of **Cs** to catch **R**. [Robertson and Seymour, '84]

- variants generalize treewidth, treedepth, flip-width, ... [Toruńczyk, 2023]
- applications in graph searching and robotics;

Cops and **Robber ()** is a game on a graph such that

- Cs and R see each other and the graph;
- Cs and R alternate moves;
- the game is over when either
 - Cs catch R or
 - **R** can move indefinitely.

a cycle has cop number 2

The cop number c(G) is the minimum # of **Cs** to catch **R**. [Robertson and Seymour, '84]

- variants generalize treewidth, treedepth, flip-width, ... [Toruńczyk, 2023]
- applications in graph searching and robotics;
- interesting from a GD point of view!

Means to bound the cop number from above:

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \dots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \dots, v_n]$, for some j > i.

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \dots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \dots, v_n]$, for some j > i.

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \ldots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \ldots, v_n]$, for some j > i.

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \ldots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \ldots, v_n]$, for some j > i.

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \ldots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \ldots, v_n]$, for some j > i.

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \dots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \dots, v_n]$, for some j > i.

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \dots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \dots, v_n]$, for some j > i. E.g.: - chordal graphs, - visibility graphs of polygons. [Lubiw+, 2017]

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \dots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \dots, v_n]$, for some j > i. E.g.: - chordal graphs,

- visibility graphs of polygons. [Lubiw+, 2017]

[Bonato and Nowakowski "Cops and Robbers: Covering by Cop-win Graphs", 2011] Lem. (shortest path) A shortest path can be guarded by 1 cop.

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \dots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \dots, v_n]$, for some j > i. E.g.: - chordal graphs,

- visibility graphs of polygons. [Lubiw+, 2017]

 $ne \quad j > i.$

[Bonato and Nowakowski "Cops and Robbers: Covering by Cop-win Graphs", 2011] Lem. (shortest path) A shortest path can be guarded by 1 cop.

- E.g.: c(planar graph) \leq 3,
 - $c(\text{unit disk graph}) \leq 9$,
 - $c(\text{string graph}) \leq 13$,
 - $c(\text{genus} \le g \text{ graph}) \le 1.268g$, [Erde and Lehner, 2021]

[Aigner and Fromme, '82] [Berg, 2017] 1 [Das and Gahlawat, 2022] 1.268g, [Erde and Lehner, 2021]

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \dots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \dots, v_n]$, for some j > i. E.g.: - chordal graphs,

- visibility graphs of polygons. [Lubiw+, 2017]

 $e_{j} > i.$

[Bonato and Nowakowski "Cops and Robbers: Covering by Cop-win Graphs", 2011] **Lem. (shortest path)** A shortest path can be **guarded** by 1 cop.

- E.g.: c(planar graph) \leq 3,
 - $c(\text{unit disk graph}) \leq 9$,
 - $c(\text{string graph}) \leq 13$,
 - $c(\text{genus} \le g \text{ graph}) \le 1.268g$, [Erde and Lehner, 2021]

- c(1-planar graphs) = ∞ ,

[Aigner and Fromme, '82] [Berg, 2017] *u* [Das and Gahlawat, 2022] L.268g, [Erde and Lehner, 2021]

Means to bound the cop number from above:

 $c(G) = 1 \Leftrightarrow G$ has **domination elimination ordering**, i.e.: v_1, v_2, \dots, v_n s.t. $N[v_i] \subseteq N[v_j]$ in $G[v_i, \dots, v_n]$, for some j > i. E.g.: - chordal graphs,

- visibility graphs of polygons. [Lubiw+, 2017]

[Bonato and Nowakowski "Cops and Robbers: Covering by Cop-win Graphs", 2011] **Lem. (shortest path)** A shortest path can be **guarded** by 1 cop.

- E.g.: c(planar graph) \leq 3,
 - $c(\text{unit disk graph}) \leq 9$,
 - $c(\text{string graph}) \leq 13$,
 - $c(\text{genus} \le g \text{ graph}) \le 1.268g$, [Erde and Lehner, 2021]
 - c(1-planar graphs) = ∞ ,
 - c(**maximal 1-planar graphs** $) \leq 3$.
- [Aigner and Fromme, '82] [Berg, 2017] 1 [Das and Gahlawat, 2022] 1.268g, [Erde and Lehner, 2021]

Thm. Subdividing edges equally many times does not reduce the cop number. [Berarducci+, '93]

Thm. Subdividing edges equally many times does not reduce the cop number. [Berarducci+, '93]

Thm. For any *c* there is a 1-planar graph with cop number *c*.

Thm. Subdividing edges equally many times does not reduce the cop number. [Berarducci+, '93]

Thm. For any *c* there is a 1-planar graph with cop number *c*. **Proof idea:**

Thm. Subdividing edges equally many times does not reduce the cop number. [Berarducci+, '93]

Thm. For any *c* there is a 1-planar graph with cop number *c*. **Proof idea:**

Thm. Subdividing edges equally many times does not reduce the cop number. [Berarducci+, '93]

Thm. For any *c* there is a 1-planar graph with cop number *c*. **Proof idea:**

Obs. In every maximal 1-planar drawing:

Obs. In every maximal 1-planar drawing:

- a pair of crossing edges induces a kite,

Obs. In every maximal 1-planar drawing:

- a pair of crossing edges induces a kite,

- a shortest path does not self-cross.

Obs. In every maximal 1-planar drawing:

- a pair of crossing edges induces a kite,

- a shortest path does not self-cross.

Obs. In every maximal 1-planar drawing:

- a pair of crossing edges induces a kite,

- a shortest path does not self-cross.

Lem. (New shortest path lemma) One cop can **guard** (i.e. *prevent from entering or crossing*) a shortest *uv*-path *P* for any *u* and *v*.

Obs. In every maximal 1-planar drawing:

- a pair of crossing edges induces a kite,

- a shortest path does not self-cross.

Lem. (New shortest path lemma) One cop can **guard** (i.e. *prevent from entering or crossing*) a shortest *uv*-path *P* for any *u* and *v*.

Proof idea:

Thm. Maximal 1-planar graphs have cop number at most three. **Proof idea**: by induction. P_1

Assume that:

Thm. Maximal 1-planar graphs have cop number at most three. **Proof idea**: by induction. P_1

Assume that:

- P_1 is a shortest *uv*-path in G',

Thm. Maximal 1-planar graphs have cop number at most three. **Proof idea**: by induction. P_1

Assume that:

- P_1 is a shortest *uv*-path in G',
- P_2 is a shortest *uv*-path in $G' \setminus (P_1 \setminus (\{u, v\}))$,

Thm. Maximal 1-planar graphs have cop number at most three. **Proof idea**: by induction. P_1

Assume that:

- P_1 is a shortest *uv*-path in G',
- P_2 is a shortest *uv*-path in $G' \setminus (P_1 \setminus (\{u, v\}))$,
- **R** is in $G' \setminus (P_1 \cup P_2)$.

Thm. Maximal 1-planar graphs have cop number at most three. **Proof idea**: by induction. P_1

Assume that:

- P_1 is a shortest *uv*-path in G',
- P_2 is a shortest *uv*-path in $G' \setminus (P_1 \setminus (\{u, v\}))$,
- **R** is in $G' \setminus (P_1 \cup P_2)$.

Observe that because

- *G*′ does not have cut vertices and
- P_1 and P_2 intersect neither each other nor itself,

Thm. Maximal 1-planar graphs have cop number at most three. **Proof idea**: by induction. P_1

Assume that:

- P_1 is a shortest *uv*-path in G',
- P_2 is a shortest *uv*-path in $G' \setminus (P_1 \setminus (\{u, v\}))$,
- **R** is in $G' \setminus (P_1 \cup P_2)$.

Observe that because

- *G*′ does not have cut vertices and
- P_1 and P_2 intersect neither each other nor itself,

there exists a shortest simple *uv*-path P_3 such that it has at least one vertex in $G' \setminus (P_1 \cup P_2)$.

Thm. Maximal 1-planar graphs have cop number at most three. **Proof idea**: by induction. P_1

Assume that:

- P_1 is a shortest *uv*-path in G',
- P_2 is a shortest *uv*-path in $G' \setminus (P_1 \setminus (\{u, v\}))$,
- **R** is in $G' \setminus (P_1 \cup P_2)$.

Observe that because

- *G*′ does not have cut vertices and
- P_1 and P_2 intersect neither each other nor itself,

there exists a shortest simple *uv*-path P_3 such that it has at least one vertex in $G' \setminus (P_1 \cup P_2)$.

Lower bound: construction

Thm. For each graph with girth ≥ 5 it holds that $c(G) \geq \delta(G)$. [Aigner and Fromme, '82]

Open questions

Thm. $c(G) \leq \text{treewidth}(G)/2 + 1$.

[Joret+, 2010]
Thm. $c(G) \le \text{treewidth}(G)/2 + 1.$ [Joret+, 2010]

Thm. treewidth(outer *k*-planar graph) $\leq 3k + 11$. [Wood and Telle+, 2007]

Thm. $c(G) \le \text{treewidth}(G)/2 + 1.$ [Joret+, 2010]

Thm. treewidth(outer *k*-planar graph) $\leq 3k + 11$. [Wood and Telle+, 2007]

? $\leq c(\text{outer } k\text{-planar graph}) \leq 1.5k + 6.5.$

Thm. $c(G) \leq \text{treewidth}(G)/2 + 1.$ [Joret+, 2010]

Thm. treewidth(outer *k*-planar graph) $\leq 3k + 11$. [Wood and Telle+, 2007]

? $\leq c(\text{outer } k\text{-planar graph}) \leq 1.5k + 6.5.$

Prob. Improve the bounds.

Thm. $c(G) \leq \text{treewidth}(G)/2 + 1.$ [Joret+, 2010]

Thm. treewidth(outer *k*-planar graph) $\leq 3k + 11$. [Wood and Telle+, 2007]

? $\leq c(\text{outer }k\text{-planar graph}) \leq 1.5k + 6.5.$

Prob. Improve the bounds.

Thm. stack number(G) \leq treewidth(G) + 1. [Ganley+, 2001]

Thm. $c(G) \le \text{treewidth}(G)/2 + 1.$ [Joret+, 2010]

Thm. treewidth(outer *k*-planar graph) $\leq 3k + 11$. [Wood and Telle+, 2007]

? $\leq c(\text{outer }k\text{-planar graph}) \leq 1.5k + 6.5.$

Prob. Improve the bounds.

Thm. stack number(G) \leq treewidth(G) + 1. [Ganley+, 2001]

Ques. $c(G) \leq \operatorname{stack} \operatorname{number}(G)$?