A Schnyder-type drawing algorithm for 5-connected triangulations

Olivier Bernardi¹, Éric Fusy² and Shizhe Liang¹

- 1. Dept. of Math, Brandeis University
- 2. LIGM/CNRS, Université Gustave Eiffel

Graph drawing'23

Triangulation = graph embedded in the plane, all faces of degree 3

= embedded maximal planar graph

Triangulation = graph embedded in the plane, all faces of degree 3

= embedded maximal planar graph

For any graph (def):

k-connected: deleting any subset of < k vertices does not disconnect

Triangulation = graph embedded in the plane, all faces of degree 3

= embedded maximal planar graph

For any graph (def): k-connected: deleting any subset of < k vertices does not disconnect

For triangulations:

- 3-connected \Leftrightarrow simple
- 4-connected \Leftrightarrow no separating 3-cycle
- 5-connected \Leftrightarrow no separating 4-cycle

Triangulation = graph embedded in the plane, all faces of degree 3

embedded maximal planar graph

4-connected not 5-connected

For any graph (def): k-connected: deleting any subset of < k vertices does not disconnect

For triangulations:

- 3-connected \Leftrightarrow simple
- 4-connected ⇔ no separating 3-cycle
- 5-connected \Leftrightarrow no separating 4-cycle

3-connected case

Schnyder structures on simple triangulations [Schnyder'89]

Any triangulation admits a **labeling** of corners by $\{1, 2, 3\}$ satisfying

Schnyder structures on simple triangulations [Schnyder'89]

Yields 3 spanning trees T_1, T_2, T_3 (Schnyder wood)

inner vertex

tree-paths from v partition inner faces into 3 regions $R_1(v)$, $R_2(v)$, $R_3(v)$

tree-paths from v partition inner faces into 3 regions $R_1(v)$, $R_2(v)$, $R_3(v)$

tree-paths from v partition inner faces into 3 regions $R_1(v)$, $R_2(v)$, $R_3(v)$

 $^{\mathsf{b}}v_3$

4-connected case

Triangulations of the 4-gon, irreducibility

A triangulation of the 4-gon is irreducible if all 3-cycles bound faces

not irreducible

irreducible

Triangulations of the 4-gon, irreducibility

A triangulation of the 4-gon is **irreducible** if all 3-cycles bound faces

Transversal structures

aka regular edge-labelings [He'93] (structures dual to rectangular tilings)

Transversal structures

aka regular edge-labelings [He'93] (structures dual to rectangular tilings)

yields two bipolar orientations:

9 faces in blue map

leftmost outgoing red path

leftmost outgoing blue path

leftmost outgoing blue path + rightmost ingoing blue path

leftmost outgoing blue path + rightmost ingoing blue path

leftmost outgoing blue path + rightmost ingoing blue path

planar straight-line drawing

planar straight-line drawing

Face-counting algorithm on square grid v_2

Face-counting algorithm on square grid v_2

 18×18 grid

Face-counting algorithm on square grid

Face-counting algorithm on square grid v_3

Face-counting algorithm on square grid v_2

4-wood associated to transversal structure

left outgoing blue edges

left outgoing red edges

4-wood associated to transversal structure

4-wood associated to transversal structure

5-connected case

5c-triangulations

5c-triangulation = triangulation of 5-gon such that every cycle with at least one vertex inside has length ≥ 5

not 5c-triangulation

5c-triangulation

5c-triangulations

5c-triangulation = triangulation of 5-gon such that every cycle with at least one vertex inside has length ≥ 5

not 5c-triangulation

5c-triangulation $\Uparrow \approx$

triangulation augmented by v_∞ is 5-connected

5c-labelings

[Bernardi, F, Liang'23]

Any 5c-triangulation has a labeling of corners by $\{1, 2, 3, 4, 5\}$ so that

• Linear time complexity

- Linear time complexity
- Displays rotational symmetries

A:
$$(2,6,4,2,1)$$

B: $(1,2,6,4,2)$
C: $(2,1,2,6,4)$
D: $(4,2,1,2,6)$
E: $(6,4,2,1,2)$
F: $(3,3,3,3,3)$

- Linear time complexity
- Displays rotational symmetries

• Variations: weighted faces, vertex-counting

- Linear time complexity
- Displays rotational symmetries

- Variations: weighted faces, vertex-counting
- Vertex resolution better than in the 3- or 4-connected drawings smallest distance between vertices

(drawing normalized to have outer k-gon inscribed in circle of radius 1)

new proof of existence for 4-connected (from 3-connected)

similar proof of existence for 5-connected (from 4-connected)