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Schnyder structures on simple triangulations
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Any triangulation admits a labeling of corners by {1, 2, 3} satisfying
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Schnyder structures on simple triangulations
[Schnyder’89]

Yields 3 spanning trees T1, T2, T3 (Schnyder wood)
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Schnyder’s face-counting algorithm
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Transversal structures
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aka regular edge-labelings [He’93]
(structures dual to rectangular tilings)
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A 4-triangulation admits a transversal

local conditions

structure iff it is irreducible

yields two bipolar orientations:
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4-labeling associated to transversal structure
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4-labeling associated to transversal structure
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5c-labelings

Any 5c-triangulation has a labeling of corners by {1, 2, 3, 4, 5} so that
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Properties and variations

• Variations: weighted faces, vertex-counting

• Displays rotational symmetries

• Vertex resolution better than in the 3- or 4-connected drawings

smallest distance between vertices

• Linear time complexity
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(drawing normalized to have outer k-gon inscribed in circle of radius 1)
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new proof of existence for 4-connected (from 3-connected)
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Schnyder orientation

no separating triangle

m
orientation is “co-accessible”

(∃ co-accessibility spanning tree)
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Strategy for proof of existence
new proof of existence for 4-connected (from 3-connected)

?

outdegree 4

outdegree 1

outdegree 3

Schnyder orientation

local rule
for orientation

similar proof of existence for 5-connected (from 4-connected)


