A Schnyder-type drawing algorithm for 5-connected triangulations

Olivier Bernardi ${ }^{1}$, Éric Fusy ${ }^{2}$ and Shizhe Liang ${ }^{1}$

1. Dept. of Math, Brandeis University
2. LIGM/CNRS, Université Gustave Eiffel

Graph drawing'23

Triangulations

Triangulation $=$ graph embedded in the plane, all faces of degree 3

$=$ embedded maximal planar graph

Triangulations

Triangulation $=$ graph embedded in the plane, all faces of degree 3

$=$ embedded maximal planar graph

For any graph (def):
k-connected: deleting any subset of $<k$ vertices does not disconnect

Triangulations

Triangulation $=$ graph embedded in the plane, all faces of degree 3

$=$ embedded maximal planar graph

For any graph (def):
k-connected: deleting any subset of $<k$ vertices does not disconnect

For triangulations:

3-connected	\Leftrightarrow	simple
4-connected	\Leftrightarrow	no separating 3-cycle
5-connected	\Leftrightarrow	no separating 4-cycle

Triangulations

Triangulation $=$ graph embedded in the plane, all faces of degree 3

$=$ embedded maximal planar graph

4-connected

not 5-connected

For any graph (def):
k-connected: deleting any subset of $<k$ vertices does not disconnect

For triangulations:

3-connected	\Leftrightarrow	simple
4-connected	\Leftrightarrow	no separating 3-cycle
5-connected	\Leftrightarrow	no separating 4-cycle

3-connected case

Schnyder structures on simple triangulations [Schnyder'89]

Any triangulation admits a labeling of corners by $\{1,2,3\}$ satisfying

Schnyder structures on simple triangulations [Schnyder'89]

Yields 3 spanning trees $T_{1}, T_{2}, T_{3} \quad$ (Schnyder wood)

inner vertex

Schnyder's face-counting algorithm
[Schnyder'90]

[Schnyder'90] tree-paths from v partition inner faces into 3 regions $R_{1}(v), R_{2}(v), R_{3}(v)$

[Schnyder'90]
tree-paths from v partition inner faces into
3 regions $R_{1}(v), R_{2}(v), R_{3}(v)$

Schnyder's face-counting algorithm

tree-paths from v partition inner faces into
3 regions $R_{1}(v), R_{2}(v), R_{3}(v)$

Schnyder's face-counting algorithm
[Schnyder'90]

planar straight-line drawing

Schnyder's face-counting algorithm

[Schnyder'90]
planar straight-line drawing

Schnyder's face-counting algorithm

[Schnyder'90]
planar straight-line drawing

4-connected case

Triangulations of the 4-gon, irreducibility

A triangulation of the 4-gon is irreducible if all 3-cycles bound faces

Triangulations of the 4-gon, irreducibility

A triangulation of the 4-gon is irreducible if all 3-cycles bound faces

not irreducible

I
triangulation augmented by v_{∞} is 4-connected
aka regular edge-labelings (structures dual to rectangular tilings)

A 4-triangulation admits a transversal structure iff it is irreducible
aka regular edge-labelings (structures dual to rectangular tilings)

A 4-triangulation admits a transversal structure iff it is irreducible
yields two bipolar orientations:

Face-counting algorithm

Face-counting algorithm

Face-counting algorithm

10×9 grid

Face-counting algorithm

Face-counting algorithm

Face-counting algorithm

Face-counting algorithm

Face-counting algorithm

Face-counting algorithm

leftmost outgoing blue path + rightmost ingoing blue path

Face-counting algorithm

leftmost outgoing blue path + rightmost ingoing blue path

Face-counting algorithm

leftmost outgoing blue path + rightmost ingoing blue path

Face-counting algorithm

Face-counting algorithm

planar straight-line drawing

Face-counting algorithm

cone property (implies planarity)

planar straight-line drawing

Face-counting algorithm on square grid (

Face-counting algorithm on square grid (8 inner faces

18×18 grid

Face-counting algorithm on square grid

Face-counting algorithm on square grid

4-wood associated to transversal structure

4-wood associated to transversal structure

yields 4 regions for each vertex v

right incoming red edges

T_{4}

left outgoing blue edges
right incoming blue edges

left outgoing red edges

4-wood associated to transversal structure

yields 4 regions for each vertex v

square-grid algo I
barycentric placement
right incoming red edges

T_{4}

left outgoing blue edges
right incoming blue edges

left outgoing red edges
(place v at $\frac{4}{28} v_{1}+\frac{8}{28} v_{2}+\frac{4}{28} v_{3}+\frac{2}{28} v_{4}$)

4-labeling associated to transversal structure

5-connected case

5c-triangulations

$5 c$-triangulation $=$ triangulation of 5 -gon such that every cycle with at least one vertex inside has length ≥ 5

not 5c-triangulation

5c-triangulation

5c-triangulations

$5 c$-triangulation $=$ triangulation of 5 -gon such that every cycle with at least one vertex inside has length ≥ 5

not 5c-triangulation

5c-triangulation

$$
\Uparrow \approx
$$

triangulation augmented by v_{∞}
is 5 -connected

5c-labelings

Any 5 c -triangulation has a labeling of corners by $\{1,2,3,4,5\}$ so that

outer vertices

inner vertices

5c-labeling

T_{3}

T_{3}

configuration at inner vertex
[Felsner, Schrezenmaier, Steiner'20] other 5-woods (less restrictive) associated to pentagon-contact representations

T_{3}

Face-counting algorithm
[Bernardi,F,Liang'23]

Face-counting algorithm
[Bernardi,F,Liang'23]

Face-counting algorithm

Face-counting algorithm

45 inner faces in total

place v at

$$
\frac{4}{45} v_{1}+\frac{4}{45} v_{2}+\frac{18}{45} v_{3}+\frac{7}{45} v_{4}+\frac{12}{45} v_{5}
$$

Face-counting algorithm
[Bernardi,F,Liang'23]

Face-counting algorithm

cone property

Face-counting algorithm

cone property

(s)

5

Face-counting algorithm

$v_{1} \quad v_{5}$

RE: Not a grid drawing
cone property

$$
\notin
$$

sheer

coordinates in $\mathbb{Q}(\sqrt{5})$

Properties and variations

- Linear time complexity

Properties and variations

- Linear time complexity
- Displays rotational symmetries

A: $(2,6,4,2,1)$
B: $(1,2,6,4,2)$
C: $(2,1,2,6,4)$
D: $(4,2,1,2,6)$
E: $(6,4,2,1,2)$
F: $(3,3,3,3,3)$

Properties and variations

- Linear time complexity
- Displays rotational symmetries

$$
\begin{aligned}
& \text { A: }(2,6,4,2,1) \\
& \text { B: }(1,2,6,4,2) \\
& \text { C: }(2,1,2,6,4) \\
& \text { D: }(4,2,1,2,6) \\
& \text { E: }(6,4,2,1,2) \\
& \text { F: }(3,3,3,3,3)
\end{aligned}
$$

- Variations: weighted faces, vertex-counting

Properties and variations

- Linear time complexity
- Displays rotational symmetries

A: $(2,6,4,2,1)$
B: $(1,2,6,4,2)$
C: $(2,1,2,6,4)$
D: $(4,2,1,2,6)$
E: $(6,4,2,1,2)$
F: $(3,3,3,3,3)$

- Variations: weighted faces, vertex-counting
- Vertex resolution better than in the 3- or 4-connected drawings

smallest distance between vertices

(drawing normalized to have outer k-gon inscribed in circle of radius 1)

Strategy for proof of existence

new proof of existence for 4-connected (from 3-connected)

Strategy for proof of existence

new proof of existence for 4-connected (from 3-connected)

Strategy for proof of existence

 new proof of existence for 4-connected (from 3-connected)
bicolored
corner
unicolored corner

Strategy for proof of existence

 new proof of existence for 4-connected (from 3-connected)
new proof of existence for 4-connected (from 3-connected)

outdegree 4
outdegree 1

Strategy for proof of existence

 new proof of existence for 4-connected (from 3-connected)
outdegree 4
outdegree 1
no separating triangle I
orientation is "co-accessible" (\exists co-accessibility spanning tree)

Schnyder orientation

outdegre

Strategy for proof of existence

 new proof of existence for 4-connected (from 3-connected)
outdegree 4
outdegree 1

Strategy for proof of existence

 new proof of existence for 4-connected (from 3-connected)
outdegree 4
outdegree 1

outdegree 3
similar proof of existence for 5-connected (from 4-connected)

