Parameterized and Approximation Algorithms for the
 Maximum Bimodal Subgraph Problem

GD 2023, Palermo

Walter Fedor V. Petr A. Tanmay Stephen M. Diana Didimo 1 Fomin ${ }^{2}$ Golovach ${ }^{2}$ Inamdar ${ }^{2}$ Kobourov ${ }^{3}$ Sieper ${ }^{4}$

${ }^{1}$ University of Perugia, Italy
${ }^{2}$ University of Bergen, Norway

${ }^{3}$ University of Arizona, USA
${ }^{4}$ University of Würzburg, Germany

Bimodality

Bimodality

Bimodality

Bimodal vertex: All outgoing (incoming) edges are consecutive.

Bimodality

Bimodal vertex: All outgoing (incoming) edges are consecutive.
Bimodal Graph: Every vertex is bimodal.

Bimodality

Bimodal vertex: All outgoing (incoming) edges are consecutive.
Bimodal Graph: Every vertex is bimodal.

Bimodality

Bimodal vertex: All outgoing (incoming) edges are consecutive.
Bimodal Graph: Every vertex is bimodal.

Bimodality

Embedding important!
\rightarrow assume plane graphs

Bimodal vertex: All outgoing (incoming) edges are consecutive.
Bimodal Graph: Every vertex is bimodal.

Bimodality

Bimodal vertex: All outgoing (incoming) edges are consecutive.
Bimodal Graph: Every vertex is bimodal.

Embedding important!
\rightarrow assume plane graphs

Motivation:

Necessary criterion for Upward Planarity, Level Planarity, ...

Bimodality

Bimodal vertex: All outgoing (incoming) edges are consecutive.
Bimodal Graph: Every vertex is bimodal.

Embedding important!
\rightarrow assume plane graphs

Motivation:

Necessary criterion for Upward Planarity, Level Planarity, ...
Sufficient criterion for L-Drawings.

Maximum Bimodal Subgraph Problem (MBS)

Given: Plane directed graph G

Maximum Bimodal Subgraph Problem (MBS)

Given: Plane directed graph G

Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum number of edges among all bimodal subgraphs of G.

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of euges among all bimodal subgraphs of G.

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of euges among all bimodal subgraphs of G.

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of euges among all bimodal subgraphs of G.

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of euges among all bimodal subgraphs of G.

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of eciges among all bimodal subgraphs of G.

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of euges among all bimodal subgraphs of G.

Previous Results:
[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
(2-Approximation)
for MBS
- Branch-and-Bound

Algorithm for MBS

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of euges among all bimodal subgraphs of G.

Previous Results:
[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
(2-Approximation) for MBS
■ Branch-and-Bound
Algorithm for MBS

Our Contribution:

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of eciges among all bimodal subgraphs of G.

Previous Results:
[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
(2-Approximation) for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of edyes among all bimodal subgraphs of G.

Previous Results:
[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
(2-Approximation) for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
- FPT-Algorithm: running time $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of eciges among all bimodal subgraphs of G.

Previous Results:
[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
(2-Approximation) for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
- FPT-Algorithm: running time $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$
- Parameter: Number b of non-bimodal vertices

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of edyes among all bimodal subgraphs of G.

Previous Results:
[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
(2-Approximation) for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
- FPT-Algorithm: running time $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$
- Parameter: Number b of non-bimodal vertices
- FPT-Algorithm: running time $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of euges among all bimodal subgraphs of G.

Previous Results:
[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
(2-Approximation) for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
- FPT-Algorithm: running time $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$
- Parameter: Number b of non-bimodal vertices
- FPT-Algorithm: running time $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$
- Compression to kernel of size polynomial in b

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of exiges among all bimodal subgraphs of G.

Previous Results:
[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
(2-Approximation) for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
- FPT-Algorithm: running time $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$
- Parameter: Number b of non-bimodal vertices
- FPT-Algorithm: running time $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$
\square Compression to kernel of size polynomial in b
E EPTAS for MWBS and for the corresponding minimization variant.

Maximum Weighted Bimodal Subgraph Problem (MWBS)

Given: Plane directed graph G with rational edge weights
Wanted: Subgraph G^{\prime} of G such that G^{\prime} is bimodal and has the maximum weight number of exiges among all bimodal subgraphs of G.

Previous Results:
[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
(2-Approximation) for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:
In this talk:

- Parameter: Branchwidth (/Treewidth)
- FPT-Algorithm: running time $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$
- Parameter: Number b of non-bimodal vertices
- FPT-Algorithm: running time $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$
- Compression to kernel of size polynomial in b
- EPTAS for MWBS and for the corresponding minimization variant.

Branchwidth

Let G be a graph. A branch decomposition of G is an unrooted proper binary tree T whose leaves correspond bijectively to $E(G)$.

Branchwidth

Let G be a graph. A branch decomposition of G is an unrooted proper binary tree T whose leaves correspond bijectively to $E(G)$.

Branchwidth

Let G be a graph. A branch decomposition of G is an unrooted proper binary tree T whose leaves correspond bijectively to $E(G)$.

Branchwidth

Let G be a graph. A branch decomposition of G is an unrooted proper binary tree T whose leaves correspond bijectively to $E(G)$.

Branchwidth

Let G be a graph. A branch decomposition of G is an unrooted proper binary tree T whose leaves correspond bijectively to $E(G)$.

Each edge a in T splits T into two connected components and corresponds to the set of vertices in G that are adjacent to edges from both components, the middle set of a.

Branchwidth

Let G be a graph. A branch decomposition of G is an unrooted proper binary tree T whose leaves correspond bijectively to $E(G)$.

Each edge a in T splits T into two connected components and corresponds to the set of vertices in G that are adjacent to edges from both components, the middle set of a.

Branchwidth

Let G be a graph. A branch decomposition of G is an unrooted proper binary tree T whose leaves correspond bijectively to $E(G)$.

Each edge a in T splits T into two connected components and corresponds to the set of vertices in G that are adjacent to edges from both components, the middle set of a.
The width of T is the maximum size of a middle set of T.

Branchwidth

Let G be a graph. A branch decomposition of G is an unrooted proper binary tree T whose leaves correspond bijectively to $E(G)$.

Each edge a in T splits T into two connected components and corresponds to the set of vertices in G that are adjacent to edges from both components, the middle set of a.
The width of T is the maximum size of a middle set of T.
$(2,3)$ The branchwidth $\operatorname{bw}(G)$ of G is the minimum width of all branch decompositions of G.

Sphere-Cut Decomposition

Let G be a connected planar graph embedded in the sphere. A Sphere-Cut Decomposition of G is a branch decomposition T together with simple closed curves ϕ_{a} for every edge $a \in T$, such that ϕ_{a} :

Sphere-Cut Decomposition

Let G be a connected planar graph embedded in the sphere. A Sphere-Cut Decomposition of G is a branch decomposition T together with simple closed curves ϕ_{a} for every edge $a \in T$, such that ϕ_{a} :

Sphere-Cut Decomposition

Let G be a connected planar graph embedded in the sphere. A Sphere-Cut Decomposition of G is a branch decomposition T together with simple closed curves ϕ_{a} for every edge $a \in T$, such that ϕ_{a} :

- intersects G only at the middle set of a

Sphere-Cut Decomposition

Let G be a connected planar graph embedded in the sphere. A Sphere-Cut Decomposition of G is a branch decomposition T together with simple closed curves ϕ_{a} for every edge $a \in T$, such that ϕ_{a} :

Sphere-Cut Decomposition

Let G be a connected planar graph embedded in the sphere. A Sphere-Cut Decomposition of G is a branch decomposition T together with simple closed curves ϕ_{a} for every edge $a \in T$, such that ϕ_{a} :

- intersects G only at the middle set of a
- separates the edges in the two components of T
- traverses each face of G at most once

Sphere-Cut Decomposition

Let G be a connected planar graph embedded in the sphere. A Sphere-Cut Decomposition of G is a branch decomposition T together with simple closed curves ϕ_{a} for every edge $a \in T$, such that ϕ_{a} :

- intersects G only at the middle set of a
- separates the edges in the two components of T
- traverses each face of G at most once

Sphere-Cut Decomposition

Let G be a connected planar graph embedded in the sphere. A Sphere-Cut Decomposition of G is a branch decomposition T together with simple closed curves ϕ_{a} for every edge $a \in T$, such that ϕ_{a} :

- intersects G only at the middle set of a
- separates the edges in the two components of T
- traverses each face of G at most once

Sphere-Cut Decomposition

Let G be a connected planar graph embedded in the sphere. A Sphere-Cut Decomposition of G is a branch decomposition T together with simple closed curves ϕ_{a} for every edge $a \in T$, such that ϕ_{a} :

- traverses each face of G at most once

Parametrization by Branchwidth

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

$\square v$ is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.

Parametrization by Branchwidth: Configurations

Theorem 1:
 There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

$\square v$ is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.

- If v is cut by a curve ϕ : keep track on which sides of ϕ the switches are.

Parametrization by Branchwidth: Configurations

Theorem 1:
 There is an algorithm that solves MWBS in $2^{\mathcal{O}(b w(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

$\square v$ is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.

- If v is cut by a curve ϕ : keep track on which sides of ϕ the switches are.
■ Encode switches as configurations by the cw order of in- and outgoing edges.

Parametrization by Branchwidth: Configurations

Theorem 1:
 There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

$\square v$ is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.

- If v is cut by a curve ϕ : keep track on which sides of ϕ the switches are.
■ Encode switches as configurations by the cw order of in- and outgoing edges.

Parametrization by Branchwidth: Configurations

Theorem 1:
 There is an algorithm that solves MWBS in $2^{\mathcal{O}(b w(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

$\square v$ is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.

- If v is cut by a curve ϕ : keep track on which sides of ϕ the switches are.
- Encode switches as configurations by the cw order of in- and outgoing edges.

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

$\square v$ is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.
■ If v is cut by a curve ϕ : keep track on which sides of ϕ the switches are.
■ Encode switches as configurations by the cw order of in- and outgoing edges.
\square If v is bimodal, there are 6 possible configurations: (o), (i), (o, i), (i, o), (o, i, o), (i, o, i)

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

$\square v$ is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.

- If v is cut by a curve ϕ : keep track on which sides of ϕ the switches are.
- Encode switches as configurations by the cw order of in- and outgoing edges.
■ If v is bimodal, there are 6 possible configurations: (o), (i), (o, i), (i, o), (o, i, o), (i, o, i)
\square Not unique:. E.g. (o) implies (i, o), (o, i), ...

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

- A configuration set \mathcal{X} for ϕ is a set with a configuration X_{v} for every vertex v cut by ϕ.

Parametrization by Branchwidth: Configurations

Theorem 1:
 There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

- A configuration set \mathcal{X} for ϕ is a set with a configuration X_{v} for every vertex v cut by ϕ.
- G has configuration set \mathcal{X}, if every v cut by ϕ is of configuration X_{v} in ϕ.

Parametrization by Branchwidth: Configurations

Theorem 1:
 There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

- A configuration set \mathcal{X} for ϕ is a set with a configuration X_{v} for every vertex v cut by ϕ.

■ G has configuration set \mathcal{X}, if every v cut by ϕ is of configuration X_{v} in ϕ.

■ If ϕ corresponds to an edge of T in an sphere-cut decomposition, it cuts at most $\mathrm{bw}(G)$ vertices.

Parametrization by Branchwidth: Configurations

Theorem 1:
 There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

- A configuration set \mathcal{X} for ϕ is a set with a configuration X_{v} for every vertex v cut by ϕ.

■ G has configuration set \mathcal{X}, if every v cut by ϕ is of configuration X_{v} in ϕ.

■ If ϕ corresponds to an edge of T in an sphere-cut decomposition, it cuts at most bw (G) vertices.
\rightarrow There exist at most $6^{\mathrm{bw}(G)}$ configuration sets for ϕ.

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

- Two configurations X, X^{\prime} are compatible, if their concatenation - after deleting consecutive duplicates - is a substring of ($\mathrm{o}, \mathrm{i}, \mathrm{o}$) or ($\mathrm{i}, \mathrm{o}, \mathrm{i}$).

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.
Idea:
■ Two configurations X, X^{\prime} are compatible, if their concatenation - after deleting consecutive duplicates - is a substring of ($\mathrm{o}, \mathrm{i}, \mathrm{o}$) or ($\mathrm{i}, \mathrm{o}, \mathrm{i}$).

$$
(\mathrm{i}, \mathrm{o}, \mathrm{i}),(\mathrm{i}) \quad \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i}, \mathrm{i}) \quad \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i})
$$

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.
Idea:
■ Two configurations X, X^{\prime} are compatible, if their concatenation - after deleting consecutive duplicates - is a substring of ($\mathrm{o}, \mathrm{i}, \mathrm{o}$) or ($\mathrm{i}, \mathrm{o}, \mathrm{i}$).

$$
(\mathrm{i}, \mathrm{o}, \mathrm{i}),(\mathrm{i}) \quad \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i}, \mathrm{i}) \quad \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i}) \quad \text { compatible }
$$

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.
Idea:
■ Two configurations X, X^{\prime} are compatible, if their concatenation - after deleting consecutive duplicates - is a substring of ($\mathrm{o}, \mathrm{i}, \mathrm{o}$) or ($\mathrm{i}, \mathrm{o}, \mathrm{i}$).

$$
\begin{array}{llll}
(\mathrm{i}, \mathrm{o}, \mathrm{i}),(\mathrm{i}) & \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i}, \mathrm{i}) & \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i}) & \text { compatible } \\
(\mathrm{i}, \mathrm{o}),(\mathrm{o}) & \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{o}) & \rightarrow(\mathrm{i}, \mathrm{o}) & \text { compatible }
\end{array}
$$

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

■ Two configurations X, X^{\prime} are compatible, if their concatenation - after deleting consecutive duplicates - is a substring of ($\mathrm{o}, \mathrm{i}, \mathrm{o}$) or ($\mathrm{i}, \mathrm{o}, \mathrm{i}$).

$$
\begin{array}{llll}
(\mathrm{i}, \mathrm{o}, \mathrm{i}),(\mathrm{i}) & \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i}, \mathrm{i}) & \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i}) & \text { compatible } \\
(\mathrm{i}, \mathrm{o}),(\mathrm{o}) & \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{o}) & \rightarrow(\mathrm{i}, \mathrm{o}) & \text { compatible } \\
(\mathrm{o}, \mathrm{i}),(\mathrm{i}, \mathrm{o}, \mathrm{i}) & \rightarrow(\mathrm{o}, \mathrm{i}, \mathrm{i}, \mathrm{o}, \mathrm{i}) & \rightarrow(\mathrm{o}, \mathrm{i}, \mathrm{o}, \mathrm{i}) & \text { not compatible }
\end{array}
$$

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

■ Two configurations X, X^{\prime} are compatible, if their concatenation - after deleting consecutive duplicates - is a substring of ($\mathrm{o}, \mathrm{i}, \mathrm{o}$) or ($\mathrm{i}, \mathrm{o}, \mathrm{i}$).

$$
\begin{array}{llll}
(\mathrm{i}, \mathrm{o}, \mathrm{i}),(\mathrm{i}) & \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i}, \mathrm{i}) & \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{i}) & \text { compatible } \\
(\mathrm{i}, \mathrm{o}),(\mathrm{o}) & \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{o}) & \rightarrow(\mathrm{i}, \mathrm{o}) & \text { compatible } \\
(\mathrm{o}, \mathrm{i}),(\mathrm{i}, \mathrm{o}, \mathrm{i}) & \rightarrow(\mathrm{o}, \mathrm{i}, \mathrm{i}, \mathrm{o}, \mathrm{i}) & \rightarrow(\mathrm{o}, \mathrm{i}, \mathrm{o}, \mathrm{i}) & \text { not compatible }
\end{array}
$$

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

- Two configurations X, X^{\prime} are compatible with respect to a configuration X^{*}, if their concatenation - after deleting consecutive duplicates - is a substring of X^{*}.

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

- Two configurations X, X^{\prime} are compatible with respect to a configuration X^{*}, if their concatenation - after deleting consecutive duplicates - is a substring of X^{*}.

$$
(\mathrm{i}, \mathrm{o}),(\mathrm{o}) \rightarrow(\mathrm{i}, \mathrm{o}, \mathrm{o}) \quad \rightarrow \quad(\mathrm{i}, \mathrm{o}) \quad \begin{aligned}
& \text { compatible } \\
& \text { with }(\mathrm{o}, \mathrm{i}, \mathrm{o})
\end{aligned}
$$

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

- Two configurations X, X^{\prime} are compatible with respect to a configuration X^{*}, if their concatenation - after deleting consecutive duplicates - is a substring of X^{*}.

$$
\begin{aligned}
(\mathrm{i}, \mathrm{o}),(\mathrm{o}) \rightarrow \quad(\mathrm{i}, \mathrm{o}, \mathrm{o}) \quad \rightarrow \quad(\mathrm{i}, \mathrm{o}) \quad \begin{array}{l}
\text { compatible } \\
\\
\\
\\
\\
\\
\\
\\
\text { with not not compatible } \\
\\
\text { with }(\mathrm{o}, \mathrm{i})
\end{array}
\end{aligned}
$$

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

- Two configurations X, X^{\prime} are compatible with respect to a configuration X^{*}, if their concatenation - after deleting consecutive duplicates - is a substring of X^{*}.

$$
\begin{aligned}
(\mathrm{i}, \mathrm{o}),(\mathrm{o}) \rightarrow \quad(\mathrm{i}, \mathrm{o}, \mathrm{o}) \rightarrow(\mathrm{i}, \mathrm{o}) \quad \begin{array}{l}
\text { compatible } \\
\text { with }(\mathrm{o}, \mathrm{i}, \mathrm{o}) \\
\text { but not compatible } \\
\text { witho }(\mathrm{o}, \mathrm{i})
\end{array}
\end{aligned}
$$

Parametrization by Branchwidth: Configurations

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

■ Two configurations X, X^{\prime} are compatible with respect to a configuration X^{*}, if their concatenation - after deleting consecutive duplicates - is a substring of X^{*}.

$$
\begin{aligned}
(\mathrm{i}, \mathrm{o}),(\mathrm{o}) \rightarrow \quad(\mathrm{i}, \mathrm{o}, \mathrm{o}) \rightarrow \quad(\mathrm{i}, \mathrm{o}) \quad \begin{array}{l}
\text { compatible } \\
\\
\\
\\
\\
\\
\\
\\
\text { with not compation }(\mathrm{o}) \\
\text { with }(\mathrm{o}, \mathrm{i})
\end{array}
\end{aligned}
$$

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

- Compute an optimal Sphere-Cut Decomposition T, root T arbitrarily at a leaf r.

G

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

■ Compute an optimal Sphere-Cut Decomposition T, root T arbitrarily at a leaf r.

- Let the inside of a curve be the side not containing r

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

- Compute an optimal Sphere-Cut Decomposition T, root T arbitrarily at a leaf r.
- Let the inside of a curve be the side not containing r
- Compute bottom up for every curve ϕ_{a} and every configuration set \mathcal{X} for ϕ_{a} the maximum subgraph of G that is bimodal in ϕ_{a} and has \mathcal{X} in ϕ_{a}.

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

- Compute an optimal Sphere-Cut Decomposition T, root T arbitrarily at a leaf r.

■ Let the inside of a curve be the side not containing r

- Compute bottom up for every curve ϕ_{a} and every configuration set \mathcal{X} for ϕ_{a} the maximum subgraph of G that is bimodal in ϕ_{a} and has \mathcal{X} in ϕ_{a}.

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

- Compute an optimal Sphere-Cut Decomposition T, root T arbitrarily at a leaf r.

■ Let the inside of a curve be the side not containing r

- Compute bottom up for every curve ϕ_{a} and every configuration set \mathcal{X} for ϕ_{a} the maximum subgraph of G that is bimodal in ϕ_{a} and has \mathcal{X} in ϕ_{a}.

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\operatorname{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

- Base Case: The curve ϕ contains a single edge $e=\left(v, v^{\prime}\right)$.

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

- Inductive Step: edges in ϕ are partitioned by ϕ_{1}, ϕ_{2}

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

.. Inductive Step: edges in ϕ are partitioned by ϕ_{1}, ϕ_{2}

Iterate through every combination of configuration sets $\mathcal{X}, \mathcal{X}_{1}, \mathcal{X}_{2}$ for the curve ϕ, ϕ_{1}, ϕ_{2}.

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

■ Inductive Step: edges in ϕ are partitioned by ϕ_{1}, ϕ_{2}

Test for every vertex v that is cut by at least one of ϕ, ϕ_{1}, ϕ_{2} :

■ If v is cut by ϕ_{1} and ϕ_{2}, but not ϕ : Are $X_{v, 1}, X_{v, 2}$ compatible?

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

.■ Inductive Step: edges in ϕ are partitioned by ϕ_{1}, ϕ_{2}

Test for every vertex v that is cut by at least one of ϕ, ϕ_{1}, ϕ_{2} :
\square If v is cut by ϕ and only one of ϕ_{1}, ϕ_{2} :
Is $X_{v, 1}$ (or $X_{v, 2}$) a substring of X_{v} ?

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

.■ Inductive Step: edges in ϕ are partitioned by ϕ_{1}, ϕ_{2}

Test for every vertex v that is cut by at least one of ϕ, ϕ_{1}, ϕ_{2} :
\square If v is cut by all three of ϕ, ϕ_{1}, ϕ_{2} :
Are $\mathcal{X}_{v, 2}$ and $\mathcal{X}_{v, 1}$ compatible with respect to \mathcal{X}_{v} ?

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

.. Inductive Step: edges in ϕ are partitioned by ϕ_{1}, ϕ_{2}

Runtime for one step:

$$
\mathcal{O}\left(6^{3 \cdot \mathrm{bw}(G)}\right) \cdot n^{\mathcal{O}(1)}=2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}
$$

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

■ Final Step: only root-edge left

Parametrization by Branchwidth: Proof Sketch

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

■ Final Step: only root-edge left

Parametrization by Branchwidth

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Parametrization by Branchwidth

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.
Since $\operatorname{bw}(G)-1 \leq \operatorname{tw}(G) \leq\left\lfloor\frac{3}{2} \operatorname{bw}(G)\right\rfloor-1$:
[Robertson and Seymour, 1991]

Parametrization by Branchwidth

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Since $\operatorname{bw}(G)-1 \leq \operatorname{tw}(G) \leq\left\lfloor\frac{3}{2} \operatorname{bw}(G)\right\rfloor-1: \quad$ [Robertson and Seymour, 1991]

Corollary 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\operatorname{tw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by treewidth.

Parametrization by Branchwidth

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Since $\operatorname{bw}(G)-1 \leq \operatorname{tw}(G) \leq\left\lfloor\frac{3}{2} \mathrm{bw}(G)\right\rfloor-1$:
[Robertson and Seymour, 1991]

Corollary 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\operatorname{tw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by treewidth.

Since the treewidth of a planar graph with n vertices is bounded in $\mathcal{O}(\sqrt{n})$:

Parametrization by Branchwidth

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\mathrm{bw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Since $\operatorname{bw}(G)-1 \leq \operatorname{tw}(G) \leq\left\lfloor\frac{3}{2} b w(G)\right\rfloor-1$:
[Robertson and Seymour, 1991]

Corollary 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\operatorname{tw}(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by treewidth.

Since the treewidth of a planar graph with n vertices is bounded in $\mathcal{O}(\sqrt{n})$:

Corollary 2:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\sqrt{n})}$ time.

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch:

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W.

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W.
Reduction Rule 1: Delete isolated vertices.

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W.

Reduction Rule 1: Delete isolated vertices.
Reduction Rule 2: Delete an edge e that is incident to two bimodal vertices. Reduce W to $W-w(e)$.

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W.

Reduction Rule 1: Delete isolated vertices.
Reduction Rule 2: Delete an edge e that is incident to two bimodal vertices. Reduce W to $W-w(e)$.
Reduction Rule 3: Replace bimodal vertices of degree >1 with one vertex of degree 1 per incident edge.

\rightarrow

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W.

Reduction Rule 1: Delete isolated vertices.
Reduction Rule 2: Delete an edge e that is incident to two bimodal vertices. Reduce W to $W-w(e)$.
Reduction Rule 3: Replace bimodal vertices of degree >1 with one vertex of degree 1 per incident edge.
\rightarrow At most b vertices with degree ≥ 2.

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W. G^{\prime} has treewidth bounded in $\mathcal{O}(\sqrt{b})$.

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W.
G^{\prime} has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
\rightarrow Use the algorithm from Theorem 1.

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W.

G^{\prime} has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
\rightarrow Use the algorithm from Theorem 1.
Running time:

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W. G^{\prime} has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
\rightarrow Use the algorithm from Theorem 1.
Running time: $\quad 2^{\mathcal{O}\left(b w\left(G^{\prime}\right)\right)} \cdot n^{\mathcal{O}(1)}$

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W.

G^{\prime} has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
\rightarrow Use the algorithm from Theorem 1.
Running time: $\quad 2^{\mathcal{O}\left(b w\left(G^{\prime}\right)\right)} \cdot n^{\mathcal{O}(1)}=2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$

Parametrization by the Number of Non-Bimodal Vertices

Theorem 2:

There exists an algorithm that solves MWBS with b non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by b.

Proof sketch: Consider the decision version of MWBS with target value W.

G^{\prime} has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
\rightarrow Use the algorithm from Theorem 1.
Running time: $\quad 2^{\mathcal{O}\left(b w\left(G^{\prime}\right)\right)} \cdot n^{\mathcal{O}(1)}=2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$

Open Problems

- Extend to the maximum k-modal subgraph problem for any given even integer $k \geq 2$.

Open Problems

■ Extend to the maximum k-modal subgraph problem for any given even integer $k \geq 2$.

- Limit the number of edges that can be deleted by an integer h.

Possible parameters: branchwidth/treewidth; h

Open Problems

■ Extend to the maximum k-modal subgraph problem for any given even integer $k \geq 2$.

- Limit the number of edges that can be deleted by an integer h. Possible parameters: branchwidth/treewidth; h
- Study MBS in the variable embedding setting.

