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Bimodality

Bimodal Graph: Every vertex is bimodal.

Bimodal vertex: All outgoing (incoming) edges
are consecutive.

not bimodal bimodal

Embedding important!
→ assume plane graphs

Necessary criterion for
Upward Planarity, Level
Planarity, . . .

Sufficient criterion for
L-Drawings.

Motivation:
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Algorithm for MBS
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Theorem: [Jacob and Pilipczuk, 2022]
Let G be a connected graph embedded in the sphere with n vertices
and branchwidth ` ≥ 2. Then there exists a sphere-cut decomposition
of G with width `, and it can be computed in O(n3) time.
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Parametrization by Branchwidth
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
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Parametrization by Branchwidth: Configurations
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

φ

� v is bimodal ⇔ at most one switch from incoming to
outgoing edges and vice versa in the clockwise order
of the edges incident to v.

� If v is cut by a curve φ: keep track on which sides of φ
the switches are.

� Encode switches as configurations by the cw order of
in- and outgoing edges.o

i

(i, o)
(o, i)

o

i

� If v is bimodal, there are 6 possible configurations:
(o), (i), (o, i), (i, o), (o, i, o), (i, o, i)

� Not unique:. E.g. (o) implies (i, o), (o, i), . . .
also:
(o, i, o), (i, o, i)
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Parametrization by Branchwidth: Configurations
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

� A configuration set X for φ is a set with a configuration
Xv for every vertex v cut by φ.

� G has configuration set X , if every v cut by φ is of
configuration Xv in φ.

� If φ corresponds to an edge of T in an sphere-cut de-
composition, it cuts at most bw(G) vertices.
→ There exist at most 6bw(G) configuration sets for φ.

φ
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Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

� Two configurations X, X′ are compatible, if their con-
catenation – after deleting consecutive duplicates – is a
substring of (o, i, o) or (i, o, i).

(i, o, i), (i) → (i, o, i, i) → (i, o, i) compatible
(i, o), (o) → (i, o, o) → (i, o) compatible
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Parametrization by Branchwidth: Configurations
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

� Two configurations X, X′ are compatible, if their con-
catenation – after deleting consecutive duplicates – is a
substring of (o, i, o) or (i, o, i).

(i, o, i), (i) → (i, o, i, i) → (i, o, i) compatible
(i, o), (o) → (i, o, o) → (i, o) compatible
(o, i), (i, o, i)→ (o, i, i, o, i) → (o, i, o, i) not compatible
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Parametrization by Branchwidth: Configurations
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

� Two configurations X, X′ are compatible, if their con-
catenation – after deleting consecutive duplicates – is a
substring of (o, i, o) or (i, o, i).

(i, o, i), (i) → (i, o, i, i) → (i, o, i) compatible
(i, o), (o) → (i, o, o) → (i, o) compatible
(o, i), (i, o, i)→ (o, i, i, o, i) → (o, i, o, i) not compatible

i

o

o

o
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Parametrization by Branchwidth: Configurations
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

� Two configurations X, X’ are compatible with respect to
a configuration X∗, if their concatenation – after dele-
ting consecutive duplicates – is a substring of X∗.
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Parametrization by Branchwidth: Configurations
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

� Two configurations X, X’ are compatible with respect to
a configuration X∗, if their concatenation – after dele-
ting consecutive duplicates – is a substring of X∗.

(i, o), (o) → (i, o, o) → (i, o) compatible
with (o, i, o)
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Parametrization by Branchwidth: Configurations
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

� Two configurations X, X’ are compatible with respect to
a configuration X∗, if their concatenation – after dele-
ting consecutive duplicates – is a substring of X∗.

(i, o), (o) → (i, o, o) → (i, o) compatible
with (o, i, o)
but not compatible
with (o, i)
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Parametrization by Branchwidth: Configurations

o
i

Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

� Two configurations X, X’ are compatible with respect to
a configuration X∗, if their concatenation – after dele-
ting consecutive duplicates – is a substring of X∗.

(i, o), (o) → (i, o, o) → (i, o) compatible
with (o, i, o)
but not compatible
with (o, i)

φ

φ1

φ2
o
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Parametrization by Branchwidth: Configurations

i

Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Idea:

� Two configurations X, X’ are compatible with respect to
a configuration X∗, if their concatenation – after dele-
ting consecutive duplicates – is a substring of X∗.

(i, o), (o) → (i, o, o) → (i, o) compatible
with (o, i, o)
but not compatible
with (o, i)

φ

o

(i, o), but not (o, i)
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Compute an optimal Sphere-Cut De-
composition T, root T arbitrarily at a
leaf r.

r

r

G

T
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Compute an optimal Sphere-Cut De-
composition T, root T arbitrarily at a
leaf r.

� Let the inside of a curve be the side not
containing r

r

r

G

T
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Compute an optimal Sphere-Cut De-
composition T, root T arbitrarily at a
leaf r.

� Let the inside of a curve be the side not
containing r

� Compute bottom up for every curve φa
and every configuration set X for φa the
maximum subgraph of G that is bimo-
dal in φa and has X in φa.

r

r

G

T
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Parametrization by Branchwidth: Proof Sketch

(o)

(o, i)

Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Compute an optimal Sphere-Cut De-
composition T, root T arbitrarily at a
leaf r.

� Let the inside of a curve be the side not
containing r

� Compute bottom up for every curve φa
and every configuration set X for φa the
maximum subgraph of G that is bimo-
dal in φa and has X in φa.

r

r

G

T
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Parametrization by Branchwidth: Proof Sketch

(o)

(o, i)

Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Compute an optimal Sphere-Cut De-
composition T, root T arbitrarily at a
leaf r.

� Let the inside of a curve be the side not
containing r

� Compute bottom up for every curve φa
and every configuration set X for φa the
maximum subgraph of G that is bimo-
dal in φa and has X in φa.

r

r

G

T
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Base Case: The curve φ contains a single edge e = (v, v′).

φ

v

v′
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Inductive Step: edges in φ are partitioned by φ1, φ2

φ
φ1

φ2

. . . . . .

. . .T
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Inductive Step: edges in φ are partitioned by φ1, φ2

φ
φ1

φ2

Iterate through every combination of
configuration sets X ,X1,X2 for the curve
φ, φ1, φ2.

. . . . . .

. . .T
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Inductive Step: edges in φ are partitioned by φ1, φ2

φ
φ1

φ2

. . . . . .

. . .T
Test for every vertex v that is cut by at
least one of φ, φ1, φ2:

� If v is cut by φ1 and φ2, but not φ:

Are Xv,1, Xv,2 compatible?
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Inductive Step: edges in φ are partitioned by φ1, φ2

φ
φ1

φ2

. . . . . .

. . .T
Test for every vertex v that is cut by at
least one of φ, φ1, φ2:

� If v is cut by φ and only one of
φ1, φ2:

Is Xv,1 (or Xv,2) a substring of Xv?
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Inductive Step: edges in φ are partitioned by φ1, φ2

φ
φ1

φ2

. . . . . .

. . .T
Test for every vertex v that is cut by at
least one of φ, φ1, φ2:

� If v is cut by all three of φ, φ1, φ2:

Are Xv,2 and Xv,1 compatible with
respect to Xv?
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Inductive Step: edges in φ are partitioned by φ1, φ2

φ
φ1

φ2

. . . . . .

. . .T
Runtime for one step:
O(63·bw(G)) · nO(1) = 2O(bw(G)) · nO(1).
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Final Step: only root-edge left

r
φ

inside of φ
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Parametrization by Branchwidth: Proof Sketch
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
Proof sketch:

� Final Step: only root-edge left

r
φ

inside of φ
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Parametrization by Branchwidth
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.
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Parametrization by Branchwidth
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.

Since bw(G)− 1 ≤ tw(G) ≤ b 3
2 bw(G)c − 1: [Robertson and Seymour, 1991]
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Parametrization by Branchwidth
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.

Since bw(G)− 1 ≤ tw(G) ≤ b 3
2 bw(G)c − 1:

Corollary 1:
There is an algorithm that solves MWBS in 2O(tw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by treewidth.

[Robertson and Seymour, 1991]
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Parametrization by Branchwidth
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.

Since bw(G)− 1 ≤ tw(G) ≤ b 3
2 bw(G)c − 1:

Corollary 1:
There is an algorithm that solves MWBS in 2O(tw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by treewidth.

Since the treewidth of a planar graph with n vertices is bounded in O(
√

n):

[Robertson and Seymour, 1991]
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Parametrization by Branchwidth
Theorem 1:
There is an algorithm that solves MWBS in 2O(bw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by branchwidth.

Since bw(G)− 1 ≤ tw(G) ≤ b 3
2 bw(G)c − 1:

Corollary 1:
There is an algorithm that solves MWBS in 2O(tw(G)) · nO(1) time. In particular,
MWBS is FPT if parameterized by treewidth.

Since the treewidth of a planar graph with n vertices is bounded in O(
√

n):

Corollary 2:
There is an algorithm that solves MWBS in 2O(

√
n) time.

[Robertson and Seymour, 1991]
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Parametrization by the Number of Non-Bimodal Vertices
Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.

Reduction Rule 1: Delete isolated vertices.
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.

Reduction Rule 1:
Reduction Rule 2:

Delete isolated vertices.
Delete an edge e that is incident to two bimodal vertices.
Reduce W to W − w(e).
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.

Reduction Rule 1:
Reduction Rule 2:

Reduction Rule 3:

→

Delete isolated vertices.
Delete an edge e that is incident to two bimodal vertices.
Reduce W to W − w(e).

Replace bimodal vertices of degree > 1 with one vertex
of degree 1 per incident edge.
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.

Reduction Rule 1:
Reduction Rule 2:

Reduction Rule 3:

→ At most b vertices with degree ≥ 2.

Delete isolated vertices.
Delete an edge e that is incident to two bimodal vertices.
Reduce W to W − w(e).

Replace bimodal vertices of degree > 1 with one vertex
of degree 1 per incident edge.
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.

G′ has treewidth bounded in O(
√

b).
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.

G′ has treewidth bounded in O(
√

b).

→ Use the algorithm from Theorem 1.
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.

G′ has treewidth bounded in O(
√

b).

→ Use the algorithm from Theorem 1.

Running time:
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Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.

G′ has treewidth bounded in O(
√

b).

→ Use the algorithm from Theorem 1.

Running time: 2O(bw(G’)) · nO(1) = 2O(
√

b) · nO(1)
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Proof sketch:
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√
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√

b) · nO(1)



11 - 13

Parametrization by the Number of Non-Bimodal Vertices

Proof sketch:

Theorem 2:
There exists an algorithm that solves MWBS with b non-bimodal vertices in
2O(
√

b) · nO(1) time. In particular, MWBS is FPT if parameterized by b.

Consider the decision version of MWBS with target value W.

G′ has treewidth bounded in O(
√

b).

→ Use the algorithm from Theorem 1.

Running time: 2O(bw(G’)) · nO(1) = 2O(
√

b) · nO(1)
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Open Problems

� Extend to the maximum k-modal subgraph problem for any given even
integer k ≥ 2.
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Open Problems

� Extend to the maximum k-modal subgraph problem for any given even
integer k ≥ 2.

� Limit the number of edges that can be deleted by an integer h.

Possible parameters:
branchwidth/treewidth; h
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Open Problems

� Extend to the maximum k-modal subgraph problem for any given even
integer k ≥ 2.

� Study MBS in the variable em-
bedding setting.

� Limit the number of edges that can be deleted by an integer h.

Possible parameters:
branchwidth/treewidth; h
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