Parameterized and Approximation Algorithms for the Maximum Bimodal Subgraph Problem

GD 2023, Palermo

WalterFedor V.Petr A.TanmayStephenM. DianaDidimo¹Fomin²Golovach²Inamdar²Kobourov³Sieper⁴

- ¹ University of Perugia, Italy
 ² University of Bergen, Norway
- ³ University of Arizona, USA
 ⁴ University of Würzburg, Germany

Bimodal vertex: All outgoing (incoming) edges are consecutive.

Bimodal vertex: All outgoing (incoming) edges are consecutive.

Bimodal vertex: All outgoing (incoming) edges are consecutive.

Bimodal vertex: All outgoing (incoming) edges are consecutive.

Embedding important! \rightarrow assume plane graphs

Bimodal vertex: All outgoing (incoming) edges are consecutive.

Bimodal vertex: All outgoing (incoming) edges are consecutive.

Bimodal Graph: Every vertex is bimodal.

Embedding important! \rightarrow assume plane graphs

Motivation:

Necessary criterion for Upward Planarity, Level Planarity, ...

Bimodal vertex: All outgoing (incoming) edges are consecutive.

Bimodal Graph: Every vertex is bimodal.

Embedding important! \rightarrow assume plane graphs

Motivation:

Necessary criterion for Upward Planarity, Level Planarity, ...

Sufficient criterion for *L*-Drawings.

Maximum Bimodal Subgraph Problem (MBS)

Given: Plane directed graph *G*

Maximum Bimodal Subgraph Problem (MBS)

Given: Plane directed graph GWanted: Subgraph G' of G such that G' is bimodal and has the maximum number of edges among all bimodal subgraphs of G.

Given: Plane directed graph *G* with rational edge weightsWanted: Subgraph *G'* of *G* such that *G'* is bimodal and has the maximum weight number of edges among all bimodal subgraphs of *G*.

Previous Results:

[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
 (2-Approximation)
 for MBS
- Branch-and-Bound Algorithm for MBS

Given: Plane directed graph *G* with rational edge weightsWanted: Subgraph *G'* of *G* such that *G'* is bimodal and has the maximum weight number of edges among all bimodal subgraphs of *G*.

Previous Results:

[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic(2-Approximation)for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

Given: Plane directed graph *G* with rational edge weightsWanted: Subgraph *G'* of *G* such that *G'* is bimodal and has the maximum weight number of edges among all bimodal subgraphs of *G*.

Previous Results:

[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic(2-Approximation)for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

Parameter: Branchwidth (/Treewidth)

Given: Plane directed graph *G* with rational edge weightsWanted: Subgraph *G'* of *G* such that *G'* is bimodal and has the maximum weight number of edges among all bimodal subgraphs of *G*.

Previous Results:

[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
 (2-Approximation)
 for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
 - FPT-Algorithm: running time $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$

Given: Plane directed graph *G* with rational edge weightsWanted: Subgraph *G'* of *G* such that *G'* is bimodal and has the maximum weight number of edges among all bimodal subgraphs of *G*.

Previous Results:

[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
 (2-Approximation)
 for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
 - FPT-Algorithm: running time $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$

4 - 10

Parameter: Number *b* of non-bimodal vertices

Given: Plane directed graph *G* with rational edge weightsWanted: Subgraph *G'* of *G* such that *G'* is bimodal and has the maximum weight number of edges among all bimodal subgraphs of *G*.

Previous Results:

[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
 (2-Approximation)
 for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
 - FPT-Algorithm: running time $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$

4 - 11

Parameter: Number *b* of non-bimodal vertices
 FPT-Algorithm: running time 2^{O(√b)} · n^{O(1)}

Given: Plane directed graph *G* with rational edge weightsWanted: Subgraph *G'* of *G* such that *G'* is bimodal and has the maximum weight number of edges among all bimodal subgraphs of *G*.

Previous Results:

[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
 (2-Approximation)
 for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
 - FPT-Algorithm: running time $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$

4 - 12

- Parameter: Number *b* of non-bimodal vertices
 FPT-Algorithm: running time 2^{O(√b)} · n^{O(1)}
 - Compression to kernel of size polynomial in *b*

Given: Plane directed graph *G* with rational edge weightsWanted: Subgraph *G'* of *G* such that *G'* is bimodal and has the maximum weight number of edges among all bimodal subgraphs of *G*.

Previous Results:

[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
 (2-Approximation)
 for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

- Parameter: Branchwidth (/Treewidth)
 - FPT-Algorithm: running time $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$

4 - 13

- Parameter: Number *b* of non-bimodal vertices
 - FPT-Algorithm: running time $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$
 - Compression to kernel of size polynomial in *b*
- EPTAS for MWBS and for the corresponding minimization variant.

Given: Plane directed graph *G* with rational edge weightsWanted: Subgraph *G'* of *G* such that *G'* is bimodal and has the maximum weight number of edges among all bimodal subgraphs of *G*.

Previous Results:

[Binucci, Didimo, Giordano 2008]

- M(W)BS is NP-hard
- Heuristic
 (2-Approximation)
 for MBS
- Branch-and-Bound Algorithm for MBS

Our Contribution:

Parameter: Branchwidth (/Treewidth)

FPT-Algorithm: running time $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$

4 - 14

In this talk:

- Parameter: Number *b* of non-bimodal vertices
 - FPT-Algorithm: running time $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$
 - Compression to kernel of size polynomial in *b*
- EPTAS for MWBS and for the corresponding minimization variant.

Let *G* be a graph. A **branch decomposition** of *G* is an unrooted proper binary tree *T* whose leaves correspond bijectively to E(G).

Let *G* be a graph. A **branch decomposition** of *G* is an unrooted proper binary tree *T* whose leaves correspond bijectively to E(G).

Let *G* be a graph. A **branch decomposition** of *G* is an unrooted proper binary tree *T* whose leaves correspond bijectively to E(G).

(1,5) (3,6)

Let *G* be a graph. A **branch decomposition** of *G* is an unrooted proper binary tree *T* whose leaves correspond bijectively to E(G).

Let *G* be a graph. A **branch decomposition** of *G* is an unrooted proper binary tree *T* whose leaves correspond bijectively to E(G).

Each edge *a* in *T* splits *T* into two connected components and corresponds to the set of vertices in *G* that are adjacent to edges from both components, the **middle set** of *a*.

Let *G* be a graph. A **branch decomposition** of *G* is an unrooted proper binary tree *T* whose leaves correspond bijectively to E(G).

Each edge *a* in *T* splits *T* into two connected components and corresponds to the set of vertices in *G* that are adjacent to edges from both components, the **middle set** of *a*.

Let *G* be a graph. A **branch decomposition** of *G* is an unrooted proper binary tree *T* whose leaves correspond bijectively to E(G).

Each edge *a* in *T* splits *T* into two connected components and corresponds to the set of vertices in *G* that are adjacent to edges from both components, the **middle set** of *a*.

The **width** of *T* is the maximum size of a middle set of *T*.

Let *G* be a graph. A **branch decomposition** of *G* is an unrooted proper binary tree *T* whose leaves correspond bijectively to E(G).

Each edge *a* in *T* splits *T* into two connected components and corresponds to the set of vertices in *G* that are adjacent to edges from both components, the **middle set** of *a*.

- The **width** of *T* is the maximum size of a middle set of *T*.
- (2,3) The **branchwidth** bw(G) of G is the minimum width of all branch decompositions of G.

Sphere-Cut Decomposition

Let *G* be a connected planar graph embedded in the sphere. A **Sphere-Cut Decomposition** of *G* is a branch decomposition *T* together with simple closed curves ϕ_a for every edge $a \in T$, such that ϕ_a :

Sphere-Cut Decomposition

Let *G* be a connected planar graph embedded in the sphere. A **Sphere-Cut Decomposition** of *G* is a branch decomposition *T* together with simple closed curves ϕ_a for every edge $a \in T$, such that ϕ_a :

Let *G* be a connected planar graph embedded in the sphere. A **Sphere-Cut Decomposition** of *G* is a branch decomposition *T* together with simple closed curves ϕ_a for every edge $a \in T$, such that ϕ_a :

Let *G* be a connected planar graph embedded in the sphere. A **Sphere-Cut Decomposition** of *G* is a branch decomposition *T* together with simple closed curves ϕ_a for every edge $a \in T$, such that ϕ_a :

intersects G only at the middle set of a

separates the edges in the two components of T

Let *G* be a connected planar graph embedded in the sphere. A **Sphere-Cut Decomposition** of *G* is a branch decomposition *T* together with simple closed curves ϕ_a for every edge $a \in T$, such that ϕ_a :

intersects *G* only at the middle set of *a* separates the edges in the two components of *T* traverses each face of *G* at most once

Let *G* be a connected planar graph embedded in the sphere. A **Sphere-Cut Decomposition** of *G* is a branch decomposition *T* together with simple closed curves ϕ_a for every edge $a \in T$, such that ϕ_a :

intersects G only at the middle set of a
 separates the edges in the two components of T
 traverses each face of G at most once

Let *G* be a connected planar graph embedded in the sphere. A **Sphere-Cut Decomposition** of *G* is a branch decomposition *T* together with simple closed curves ϕ_a for every edge $a \in T$, such that ϕ_a :

intersects *G* only at the middle set of *a*separates the edges in the two components of *T*traverses each face of *G* at most once

Let *G* be a connected planar graph embedded in the sphere. A **Sphere-Cut Decomposition** of *G* is a branch decomposition *T* together with simple closed curves ϕ_a for every edge $a \in T$, such that ϕ_a :

Parametrization by Branchwidth

Theorem 1:

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

■ v is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.

Theorem 1:

- v is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.
- If *v* is cut by a curve φ: keep track on which sides of φ the switches are.

Theorem 1:

- v is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.
- If *v* is cut by a curve φ: keep track on which sides of φ the switches are.
- Encode switches as configurations by the cw order of in- and outgoing edges.

Theorem 1:

- v is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.
- If *v* is cut by a curve φ: keep track on which sides of φ the switches are.
- Encode switches as configurations by the cw order of in- and outgoing edges.

Theorem 1:

- v is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.
- If *v* is cut by a curve φ: keep track on which sides of φ the switches are.
- Encode switches as configurations by the cw order of in- and outgoing edges.

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

- v is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.
- If *v* is cut by a curve φ: keep track on which sides of φ the switches are.
- Encode switches as configurations by the cw order of in- and outgoing edges.

If v is bimodal, there are 6 possible configurations:
 (o), (i), (o, i), (i, o), (o, i, o), (i, o, i)

Theorem 1:

- v is bimodal \Leftrightarrow at most one switch from incoming to outgoing edges and vice versa in the clockwise order of the edges incident to v.
- If *v* is cut by a curve φ: keep track on which sides of φ the switches are.
- Encode switches as configurations by the cw order of in- and outgoing edges.
- If v is bimodal, there are 6 possible configurations:
 (o), (i), (o, i), (i, o), (o, i, o), (i, o, i)
- Not unique:. E.g. (o) implies (i, o), (o, i), ...

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

A **configuration set** \mathcal{X} for ϕ is a set with a configuration X_v for every vertex v cut by ϕ .

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

- A configuration set \mathcal{X} for ϕ is a set with a configuration X_v for every vertex v cut by ϕ .
- G has configuration set \mathcal{X} , if every v cut by ϕ is of configuration X_v in ϕ .

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

- A configuration set \mathcal{X} for ϕ is a set with a configuration X_v for every vertex v cut by ϕ .
- G has configuration set \mathcal{X} , if every v cut by ϕ is of configuration X_v in ϕ .
- If ϕ corresponds to an edge of *T* in an sphere-cut decomposition, it cuts at most bw(*G*) vertices.

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

- A configuration set \mathcal{X} for ϕ is a set with a configuration X_v for every vertex v cut by ϕ .
- G has configuration set \mathcal{X} , if every v cut by ϕ is of configuration X_v in ϕ .
- If ϕ corresponds to an edge of *T* in an sphere-cut decomposition, it cuts at most bw(*G*) vertices. → There exist at most 6^{bw(G)} configuration sets for ϕ .

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations X, X' are compatible, if their concatenation – after deleting consecutive duplicates – is a substring of (o, i, o) or (i, o, i).

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations X, X' are compatible, if their concatenation – after deleting consecutive duplicates – is a substring of (o, i, o) or (i, o, i).

 $(i, o, i), (i) \quad \rightarrow (i, o, i, i) \quad \rightarrow (i, o, i)$

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations X, X' are compatible, if their concatenation – after deleting consecutive duplicates – is a substring of (o, i, o) or (i, o, i).

 $(i, o, i), (i) \rightarrow (i, o, i, i) \rightarrow (i, o, i)$ compatible

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations X, X' are compatible, if their concatenation – after deleting consecutive duplicates – is a substring of (o, i, o) or (i, o, i).

$$(i, o, i), (i)$$
 \rightarrow (i, o, i, i) \rightarrow (i, o, i) compatible $(i, o), (o)$ \rightarrow (i, o, o) \rightarrow (i, o) compatible

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations X, X' are compatible, if their concatenation – after deleting consecutive duplicates – is a substring of (o, i, o) or (i, o, i).

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations *X*, *X*['] are compatible, if their concatenation – after deleting consecutive duplicates – is a substring of (o, i, o) or (i, o, i).

 $(i, o, i), (i) \rightarrow (i, o, i, i) \rightarrow (i, o, i)$ \rightarrow (i, o, i)compatible $(i, o), (o) \rightarrow (i, o, o) \rightarrow (i, o)$ \rightarrow (i, o)compatible $(o, i), (i, o, i) \rightarrow (o, i, i, o, i)$ \rightarrow (o, i, o, i)not compatible

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations X, X' are compatible with respect to a configuration X*, if their concatenation – after deleting consecutive duplicates – is a substring of X*.

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations X, X' are compatible with respect to a configuration X^{*}, if their concatenation – after deleting consecutive duplicates – is a substring of X^{*}.

 $(i, o), (o) \rightarrow (i, o, o) \rightarrow (i, o)$ compatible with (o, i, o)

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations X, X' are compatible with respect to a configuration X^{*}, if their concatenation – after deleting consecutive duplicates – is a substring of X^{*}.

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

 $(i, o), (o) \rightarrow (i, o, o)$

Idea:

Two configurations X, X' are compatible with respect to a configuration X^* , if their concatenation – after deleting consecutive duplicates – is a substring of X^* .

$$\rightarrow (i, o) \quad \begin{array}{l} \text{compatible} \\ \text{with } (o, i, o) \\ \text{but not compatible} \\ \text{with } (o, i) \end{array}$$

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Idea:

Two configurations X, X' are compatible with respect to a configuration X^* , if their concatenation – after deleting consecutive duplicates – is a substring of X^* .

(i, o), but not (o, i)

$$(i, o), (o) \rightarrow (i, o, o) \rightarrow (i, o) contract with the set of the se$$

mpatible th (o, i, o) but not compatible with (o, i)

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

G

Proof sketch:

Compute an optimal Sphere-Cut Decomposition *T*, root *T* arbitrarily at a leaf *r*.

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

- Compute an optimal Sphere-Cut Decomposition *T*, root *T* arbitrarily at a leaf *r*.
- Let the inside of a curve be the side not containing r

G

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

- Compute an optimal Sphere-Cut Decomposition *T*, root *T* arbitrarily at a leaf *r*.
- Let the **inside** of a curve be the side not containing *r*
- Compute **bottom up** for every curve ϕ_a and every configuration set \mathcal{X} for ϕ_a the maximum subgraph of *G* that is bimodal in ϕ_a and has \mathcal{X} in ϕ_a .

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

- Compute an optimal Sphere-Cut Decomposition *T*, root *T* arbitrarily at a leaf *r*.
- Let the **inside** of a curve be the side not containing *r*
- Compute **bottom up** for every curve ϕ_a and every configuration set \mathcal{X} for ϕ_a the maximum subgraph of G that is bimodal in ϕ_a and has \mathcal{X} in ϕ_a .

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

- Compute an optimal Sphere-Cut Decomposition *T*, root *T* arbitrarily at a leaf *r*.
- Let the **inside** of a curve be the side not containing *r*
- Compute **bottom up** for every curve ϕ_a and every configuration set \mathcal{X} for ϕ_a the maximum subgraph of *G* that is bimodal in ϕ_a and has \mathcal{X} in ϕ_a .

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Base Case: The curve ϕ contains a single edge e = (v, v').

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Inductive Step: edges in ϕ are partitioned by ϕ_1, ϕ_2

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Inductive Step: edges in ϕ are partitioned by ϕ_1, ϕ_2

Iterate through every combination of configuration sets X, X_1 , X_2 for the curve ϕ, ϕ_1, ϕ_2 .

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Inductive Step: edges in ϕ are partitioned by ϕ_1, ϕ_2

Test for every vertex v that is cut by at least one of ϕ , ϕ_1 , ϕ_2 :

If v is cut by ϕ_1 and ϕ_2 , but not ϕ : Are $X_{v,1}, X_{v,2}$ compatible?

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Inductive Step: edges in ϕ are partitioned by ϕ_1, ϕ_2

Test for every vertex v that is cut by at least one of ϕ , ϕ_1 , ϕ_2 :

If v is cut by ϕ and only one of ϕ_1, ϕ_2 :

Is $X_{v,1}$ (or $X_{v,2}$) a substring of X_v ?

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Inductive Step: edges in ϕ are partitioned by ϕ_1, ϕ_2

Test for every vertex v that is cut by at least one of ϕ , ϕ_1 , ϕ_2 :

If *v* is cut by all three of φ, φ₁, φ₂:
Are X_{v,2} and X_{v,1} compatible with respect to X_v?

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Inductive Step: edges in ϕ are partitioned by ϕ_1, ϕ_2

Runtime for one step: $\mathcal{O}(6^{3 \cdot bw(G)}) \cdot n^{\mathcal{O}(1)} = 2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}.$

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Final Step: only root-edge left

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Proof sketch:

Final Step: only root-edge left

Theorem 1: There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Since $bw(G) - 1 \le tw(G) \le \lfloor \frac{3}{2}bw(G) \rfloor - 1$:

[Robertson and Seymour, 1991]

Theorem 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Since
$$bw(G) - 1 \le tw(G) \le \lfloor \frac{3}{2}bw(G) \rfloor - 1$$
: [Robertson and Seymour, 1991]

Corollary 1:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(tw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by treewidth.

Theorem 1: There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Since
$$bw(G) - 1 \le tw(G) \le \lfloor \frac{3}{2}bw(G) \rfloor - 1$$
: [Robertson and Seymour, 1991]

Corollary 1: There is an algorithm that solves MWBS in $2^{\mathcal{O}(tw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by treewidth.

Since the treewidth of a planar graph with *n* vertices is bounded in $O(\sqrt{n})$:

Theorem 1: There is an algorithm that solves MWBS in $2^{\mathcal{O}(bw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by branchwidth.

Since
$$bw(G) - 1 \le tw(G) \le \lfloor \frac{3}{2}bw(G) \rfloor - 1$$
: [Robertson and Seymour, 1991]

Corollary 1: There is an algorithm that solves MWBS in $2^{\mathcal{O}(tw(G))} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by treewidth.

Since the treewidth of a planar graph with *n* vertices is bounded in $O(\sqrt{n})$:

Corollary 2:

There is an algorithm that solves MWBS in $2^{\mathcal{O}(\sqrt{n})}$ time.

11 - 1

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

11 - 2

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch:

11 - 3

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*.

11 - 4

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value W.**Reduction Rule 1:** Delete isolated vertices.

11 - 5

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*. **Reduction Rule 1:** Delete isolated vertices. **Reduction Rule 2:** Delete an edge *e* that is incident to two bimodal vertices. Reduce *W* to W - w(e).

11 - 6

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*.

Reduction Rule 1: Delete isolated vertices.

Reduction Rule 2: Delete an edge *e* that is incident to two bimodal vertices. Reduce *W* to W - w(e).

Reduction Rule 3: Replace bimodal vertices of degree > 1 with one vertex of degree 1 per incident edge.

11 - 7

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*.

Reduction Rule 1: Delete isolated vertices.

Reduction Rule 2: Delete an edge *e* that is incident to two bimodal vertices. Reduce *W* to W - w(e).

Reduction Rule 3: Replace bimodal vertices of degree > 1 with one vertex of degree 1 per incident edge.

 \rightarrow At most *b* vertices with degree \geq 2.

11 - 8

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*. *G'* has treewidth bounded in $O(\sqrt{b})$.

11 - 9

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*.

- *G'* has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
- \rightarrow Use the algorithm from Theorem 1.

11 - 10

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*.

- *G'* has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
- \rightarrow Use the algorithm from Theorem 1.

Running time:

11 - 11

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*.

- *G'* has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
- \rightarrow Use the algorithm from Theorem 1.

Running time: $2^{\mathcal{O}(bw(G'))} \cdot n^{\mathcal{O}(1)}$

11 - 12

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*.

- *G'* has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
- \rightarrow Use the algorithm from Theorem 1.

Running time: $2^{\mathcal{O}(bw(G'))} \cdot n^{\mathcal{O}(1)} = 2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$

11 - 13

Theorem 2:

There exists an algorithm that solves MWBS with *b* non-bimodal vertices in $2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$ time. In particular, MWBS is FPT if parameterized by *b*.

Proof sketch: Consider the decision version of MWBS with target value *W*.

- *G'* has treewidth bounded in $\mathcal{O}(\sqrt{b})$.
- \rightarrow Use the algorithm from Theorem 1.

Running time: $2^{\mathcal{O}(bw(G'))} \cdot n^{\mathcal{O}(1)} = 2^{\mathcal{O}(\sqrt{b})} \cdot n^{\mathcal{O}(1)}$

Open Problems

Extend to the maximum *k*-modal subgraph problem for any given even integer $k \ge 2$.

Open Problems

- Extend to the maximum *k*-modal subgraph problem for any given even integer $k \ge 2$.
- Limit the number of edges that can be deleted by an integer *h*.

Possible parameters: branchwidth/treewidth; *h*

Open Problems

- Extend to the maximum *k*-modal subgraph problem for any given even integer $k \ge 2$.
- Limit the number of edges that can be deleted by an integer *h*.

Possible parameters: branchwidth/treewidth; *h*

Study MBS in the variable embedding setting.

